
ZSM4

Macro Assembler
for CP/M-80, RSX180 and UZI180 Operating Systems

Reference Manual

Version 4.3

Hector Peraza, June 2021

1

Table of Contents
1 Introduction.. 4
2 Running ZSM4.. 5

2.1 Invoking the assembler.. 5
2.2 Command format... 5

2.2.1 Option switches... 6
2.3 Source file format... 7

2.3.1 Statements... 7
2.3.2 Symbols.. 7
2.3.3 Numeric Constants... 8
2.3.4 Strings.. 8

2.4 Expression Evaluation.. 9
2.4.1 Arithmetic and Logical Operators...9
2.4.2 Modes.. 10
2.4.3 Externals.. 11

2.5 Pseudo operators... 11
2.5.1 ASEG... 11
2.5.2 COMMON... 11
2.5.3 CSEG... 11
2.5.4 DEFB, DEFM, DB (Define Byte)...12
2.5.5 DEFC, DC (Define Character)..12
2.5.6 DEFL, ASET (Define Label)..12
2.5.7 DEFS, DS (Define Space)... 12
2.5.8 DEFW, DW (Define Word)... 13
2.5.9 DEFZ (Define Zero-terminated string)...13
2.5.10 DSEG... 13
2.5.11 END... 13
2.5.12 ENTRY, GLOBAL, PUBLIC.. 14
2.5.13 EQU.. 14
2.5.14 EXT, EXTRN... 14
2.5.15 IDENT... 14
2.5.16 INCLUDE, MACLIB... 15
2.5.17 NAME.. 15
2.5.18 ORG (Define Origin).. 15
2.5.19 PAGE, EJECT, FORM... 16
2.5.20 SUBTTL... 16
2.5.21 TITLE... 16
2.5.22 .COMMENT.. 16
2.5.23 .EVEN and .ODD.. 17
2.5.24 .PRINTX... 17
2.5.25 .RADIX... 18
2.5.26 .REQUEST, RQST.. 18
2.5.27 .Z80, .Z180, .Z280.. 18

2

2.5.28 Conditional Pseudo Operations..19
2.5.28.1 ELSE.. 20
2.5.28.2 ENDIF.. 20

2.5.29 Listing Control Pseudo Operations...20
2.5.30 Relocation Pseudo Operations..21

2.5.30.1 ORG Pseudo-op... 21
2.5.31 Relocation Before Loading...22

2.6 MACROS and Block Pseudo Operations...22
2.6.1 Terms... 22
2.6.2 REPT-ENDM... 23
2.6.3 IRP-ENDM.. 23
2.6.4 IRPC-ENDM.. 23
2.6.5 MACRO... 24
2.6.6 ENDM... 25
2.6.7 EXITM... 25
2.6.8 LOCAL... 25
2.6.9 Special Macro Operators and Forms..26

2.7 ZSM4 Errors... 27
2.8 Compatibility with other assemblers..28
2.9 Additional notes.. 29

A Operation under CP/M... 31
B Operation under RSX180..32
C Operation under UZI180...33
D Operation under Linux or Windows..34

3

1 Introduction

ZSM4 is a macro-assembler for microcomputer systems with a Z80 or compatible CPU with a CP/M or
RSX180 operating system. It is a major rewrite of the Z80ASM assembler which first appeared on CP/M US
User Group, Vol 16. The original source was Copyright (C) 1977, Lehman Consulting Services and was put
into the public domain. It was further modified by Ray Halls in 1982 and Neil Harrison in 1983. Last known
version was 2.8.

ZSM4 main features are:

• Assembles Z80, Z180 or Z280 code using the standard Zilog/Mostek mnemonics.

• Supports conditional assembly, enhanced by an expanded set of conditional pseudo operations
that include testing of assembly pass, symbol definition, and parameters to macros. Conditionals
may be nested up to 8 levels.

• Supports a complete standard macro facility including IRP, IRPC, REPEAT, local variables and EXITM.
Nesting of macros is limited only by memory.

• Produces a REL file suitable for linking with Microsoft's L80 or Digital Research's LINK.

4

2 Running ZSM4

2.1 Invoking the assembler
The command to run ZSM4 is

ZSM4 [command]

The format of the command is explained in the next section. If no command is specified, the assembler
enters interactive mode, indicated by the prompt "*", indicating it is ready to accept commands.

2.2 Command format
A command to ZSM4 has the following format:

[objfile],[lstfile]=srcfile[/option][/option...]

where objfile, lstfile and srcfile are file specifications for the output object file, output listing file and input
source file respectively. All file names should follow the operating system's conventions for file names and
extensions, and can specify also a device name.

The default extensions are as follows:

File CP/M RSX180

Relocatable object file REL OBJ

Listing file PRN LST

Source file MAC MAC

The default device name with the CP/M operating system is the currently logged disk. The default device
name with the RSX180 operating system is SY0:, the default user device.

The device names are as follows:

Device CP/M RSX180

Disk drives A:, B:, C: SY:, LB:, DYn:, DUn, etc.

Line printer LST: or PRN: LP:

Console TTY: or CON: TI:

5

Examples:

,TTY:=TEST Assemble the source file TEST.MAC and list the program on the
console. No object code is generated. Useful for error check.

SMALL,LST:=B:TEST Assemble TEST.MAC (found on disk drive B), place the object file
in SMALL.REL and list the program on the line printer.

2.2.1 Option switches

Options are specified via a switch consisting of a slash followed by a single letter. Certain options require an
additional argument, as described below. More than one switch can be used, but each must be preceded
by a slash. All switches are optional.

The available switches are:

/L Force generation of a listing file.

/Dsymbol[=value] Define symbol and optionally assign a value. The value is a numeric
constant following the format described in Section 2.3.3. If no value is specified, 0 is
assumed.

/Sn Set the maximum symbol name length in the REL file. The value of n can be
anywhere from 5 to 8, and defaults to 6.

/Zn Select the initial target CPU type, n can be 0 for Z80 (default), 1 for Z180 and 2 for
Z280. This option can be overridden by a .Z80, .Z180 or .Z280 pseudo-operator (see
Section 2.5.27)

/M Initialize block data areas defined by the DEFS or DS pseudo-op to zeros. If the
switch is not specified, the space is not guaranteed to contain zeros.

/U Treat all undefined symbols as External.

/Iddn:[directory] Specify a search path for include files (RSX180 version only.)

Examples:

=TEST/L Assemble TEST.MAC, place the object file in TEST.REL and a listing file in
TEST.PRN

LAST=TEST/U Assemble TEST.MAC and place the object file in LAST.REL. No listing file will
be generated. All undefined symbols will be declared as External.

6

2.3 Source file format
Input source lines of up to 160 characters in length are acceptable. ZSM4 preserves lower case letters in
quoted strings and comments. All symbols, opcodes and pseudo-opcodes typed in lower case will be
converted internally to upper case.

2.3.1 Statements

Source files input to ZSM4 consist of statements of the form:

[label[:[:]]] [operator] [arguments] [;comment]

Statements do not need to begin in column 1. Multiple blanks or tabs may be used to improve readability.

If a label is present, it is the first item in the statement and can be immediately followed by a colon. If the
label is the only item on a line, then the colon is mandatory. If the label is followed by two colons, it is
declared as PUBLIC (see Section 2.5.12). For example:

FOO:: RET

is equivalent to

PUBLIC FOO
FOO: RET

The next item after the label, or the first item on the line if no label is present, is an operator. An operator
may be a Z80 mnemonic, pseudo-op, macro call or expression. The evaluation is as follows:

1. Macro call

2. Mnemonic/Pseudo operation

3. Expression

The arguments following the operator will, of course, vary in form according to the operator.

A comment always begins with a semicolon and ends with a carriage return. A comment may be a line by
itself or it may be appended to a line that contains a statement. Extended comments can be entered using
the .COMMENT pseudo operation (see Section 2.5.22).

2.3.2 Symbols

ZSM4 symbols may be of any length, however, only the first 12 characters are significant, and in addition
only the first six are stored in the object file (unless changed with the S option switch, see Section 2.2.1).
The following characters are legal in a symbol:

A-Z 0-9 $. ? _ @

7

A symbol may not start with a digit. When a symbol is read, lower case is translated into upper case. If a
symbol reference is followed by ## it is declared external (see also the EXTRN pseudo-op, Section 2.5.14).

2.3.3 Numeric Constants

The default base for numeric constants is decimal. This may be changed by the .RADIX pseudo-op (see
Section 2.5.25). Any base from 2 (binary) to 16 (hexadecimal) may be selected. When the base is greater
than 10, A-F are the digits following 9. If the first digit of a number is not numeric, the number must be
preceded by a zero.

Numbers are 16-bit unsigned quantities. A number is always evaluated in the current radix unless one of
the following special notations is used:

nnnnB Binary
nnnnD Decimal
nnnnO Octal
nnnnQ Octal
nnnnH Hexadecimal

Overflow of a number beyond two bytes is ignored and the result is the low order 16-bits.

A character constant is a string comprised of zero, one or two ASCII characters, delimited by quotation
marks, and used in a non-simple expression. For example, in the statement

DB 'A'+1

'A' is a character constant. But the statement

DB 'A'

uses 'A' as a string because it is in a simple expression. The rules for character constant delimiters are the
same as for strings.

A character constant comprised of one character has as its value the ASCII value of that character. That is,
the high order byte of the value is zero, and the low order byte is the ASCII value of the character. For
example, the value of the constant 'A' is 41H.

A character constant comprised of two characters has as its value the ASCII value of the first character in
the low order byte and the ASCII value of the second character in the high order byte. For example, the
value of the character constant 'AB' is 41H+42H*256.

2.3.4 Strings

A string is comprised of zero or more characters delimited by quotation marks. Either single or double
quotes may be used as string delimiters. The delimiter quotes may be used as characters if they appear
twice for every character occurrence desired. For example, the statement

8

DB "I am ""great"" today"

stores the string

I am "great" today

If there are zero characters between the delimiters, the string is a null string.

2.4 Expression Evaluation

2.4.1 Arithmetic and Logical Operators

The following table list the allowed operators and their precedence:

Operator Function Precedence

NUL Test for Null argument 1

LOW Take LOW byte 2

HIGH Take HIGH byte 2

* Unsigned Multiply 3

/ Unsigned Divide 3

MOD Unsigned Module 3

SHR Shift Right 3

SHL Shift Left 3

- Unary Minus 4

+ Add 5

- Subtract 5

EQ Equal 6

NE Not Equal 6

LT Less Than 6

LE Less Than or Equal 6

GT Greater Than 6

GE Greater Than or Equal 6

LESS Signed Less Than 6

NOT Bitwise Not 7

AND Bitwise And 8

OR Bitwise Or 9

XOR Bitwise Exclusive Or 9

9

Parentheses are used to change the order of precedence. During evaluation of an expression, as soon as a
new operator is encountered that has precedence less than or equal to the last operator encountered, all
operations up to the new operator are performed. That is, sub-expressions involving operators of higher
precedence are computed first.

All operators except +, -, *, / must be separated from their operands by at least one space.

The byte isolation operators (HIGH, LOW) isolate the high or low order 8 bits of an Absolute 16-bit value. If
a relocatable value is supplied as an operand, HIGH and LOW will treat it as if it were relative to location
zero.

2.4.2 Modes

All symbols used as operands in expressions are in one of the following modes: Absolute, Data Relative,
Program (Code) Relative or COMMON. (See Section 2.5 for the ASEG, CSEG, DSEG and COMMON pseudo-
ops.) Symbols assembled under the ASEG, CSEG (default), or DSEG pseudo-ops are in Absolute, Code
Relative or Data Relative mode respectively.

The number of COMMON modes in a program is determined by the number of COMMON blocks that have
been named with the COMMON pseudo-op. Two COMMON symbols are not in the same mode unless they
are in the same COMMON block. In any operation other than addition or subtraction, the mode of both
operands must be Absolute.

If the operation is addition, the following rules apply:

1. At least one of the operands must be Absolute.

2. Absolute + mode = mode

If the operation is subtraction, the following rules apply:

1. mode - Absolute = mode

2. mode - mode = Absolute

where the two modes are the same.

Each intermediate step in the evaluation of an expression must conform to the above rules for modes, or
an error will be generated. For example, if FOO, BAZ and ZAZ are three Program Relative symbols, the
expression

FOO + (BAZ - ZAZ)

is legal because the first step (BAZ - ZAZ) generates an Absolute value that is then added to the Program
Relative value, FOO.

10

2.4.3 Externals

Aside from its classification by mode, a symbol is either External or not External. (See EXTRN, Section
2.5.14.) An External value must be assembled into a two-byte field (singe-byte Externals are not supported.)
The following rules apply to the use of Externals in expressions:

1. Externals are legal only in addition and subtraction.

2. If an External symbol is used in an expression, the result of the expression is always External.

3. When the operation is addition, either operand (but not both) may be External.

4. When the operation is subtraction, only the first operand may be External.

2.5 Pseudo operators

2.5.1 ASEG

Syntax:

ASEG

ASEG sets the location counter to an absolute segment of memory. The location of the absolute counter
will be that of the last ASEG (default is 0), unless an ORG is done after the ASEG to change the location. The
effect of ASEG is also achieved by using the code segment (CSEG) pseudo operation and the [P] switch in
DR's LINK. See also Section 2.5.30.

2.5.2 COMMON

Syntax:

COMMON /blockname/

COMMON sets the location counter to the selected common block in memory. The location is always the
beginning of the area so that compatibility with the FORTRAN COMMON statement is maintained. If
blockname is omitted or consists of spaces, it is considered to be blank common. See also Section 2.5.30.

2.5.3 CSEG

Syntax:

CSEG

CSEG sets the location counter to the code relative segment of memory. The location will be that of the last
CSEG (default is 0), unless an ORG is done after the CSEG to change the location. CSEG is the default
condition of the assembler (see also Section 2.5.30.)

11

2.5.4 DEFB, DEFM, DB (Define Byte)

Syntax:

DB exp[,exp...][,string...]
DB string[,string...][,exp...]
DEFB exp[,exp...][,string...]
DEFB string[,string...][,exp...]
DEFM string[,string...]

The arguments to DB are either expressions or strings. DB stores the values of the expressions or the
characters of the strings in successive memory locations beginning with the current location counter.

Expressions must evaluate to one byte. (if the high byte of the result is 0 or 255, no error is given;
otherwise, an A error results.)

Strings of three or more characters may not be used in expressions (i.e., they must be immediately
followed by a comma or the end of the line). The characters in a string are stored in the order of
appearance, each as a one-byte value with the high order bit set to zero.

2.5.5 DEFC, DC (Define Character)

Syntax:

DC string
DEFC string

DC stores the characters in string in successive memory locations beginning with the current location
counter. As with DB, characters are stored in order of appearance, each as a one-byte value with the high
order bit set to zero. However, DC stores the last character of the string with the high order bit set to one.
An error will result if the argument to DC is a null string.

2.5.6 DEFL, ASET (Define Label)

Syntax:

name ASET exp
name DEFL exp

DEFL is the same as EQU, except that no error is generated if name is already defined. DEFL and ASET are
synonymous.

2.5.7 DEFS, DS (Define Space)

Syntax:

DS exp
DEFS exp

12

DS reserves an area of memory. The value of exp gives the number of bytes to be allocated. All names used
in exp must be previously defined (i.e., all names known at that point on pass 1). Otherwise, a V error is
generated during pass 1 and a U error may be generated during pass 2. If a U error is not generated during
pass 2, a phase error will probably be generated because the DS generated no code on pass 1.

2.5.8 DEFW, DW (Define Word)

Syntax:

DW exp[,exp...]
DEFW exp[,exp...]

DW stores the values of the expressions in successive memory locations beginning with the current
location counter. Expressions are evaluated as 2-byte (word) values.

2.5.9 DEFZ (Define Zero-terminated string)

Syntax:

DEFZ string

DEFZ stores the characters in string in successive memory locations beginning with the current location
counter and adds an extra zero byte at the end of the string.

2.5.10 DSEG

Syntax:

DSEG

DSEG sets the location counter to the Data Relative segment of memory. The location of the data relative
counter wil be that of the last DSEG (default is 0), unless an ORG is done after the DSEG to change the
location. See also Section 2.5.30.

2.5.11 END

Syntax:

END [exp]

The END statement specifies the end of the program. If exp is present, it is the start address of the
program. If exp is not present, then no start address is passed to the linker for that program.

13

2.5.12 ENTRY, GLOBAL, PUBLIC

Syntax:

ENTRY name[,name...]
GLOBAL name[,name...]
PUBLIC name[,name...]

ENTRY, GLOBAL or PUBLIC declares each name in the list as internal and therefore available for use by this
program and other programs to be loaded concurrently. All of the names in the list must be defined in the
current program or a U error results. An M error is generated if the name is an External name or COMMON
block name.

2.5.13 EQU

Syntax:

name EQU exp

EQU assigns the value of exp to name. If exp is external, an error is generated. If name already has a value
other than exp, an M error is generated.

2.5.14 EXT, EXTRN

Syntax:

EXT name[,name...]
EXTRN name[,name...]

EXT or EXTRN declares that the name(s) in the list are external (i.e., defined in a different program). If any
item in the list references a name that is defined in the current program, an M error results. A reference to
a name where the name is followed immediately by two pound signs (e.g., NAME##) also declares the name
as external.

2.5.15 IDENT

Syntax:

IDENT 'ident'

IDENT defines an identification string for the module that can be used for version tracking. Only the first six
characters are significant.

14

2.5.16 INCLUDE, MACLIB

Syntax:

INCLUDE filename
MACLIB filename

The INCLUDE pseudo-op assembles source statements from an alternate source file into the current
source file. Use of INCLUDE eliminates the need to repeat an often-used sequence of statements in the
current source file. INCLUDE and MACLIB are synonymous.

filename is any valid file specification, as determined by the operating system. Defaults for file name
extensions and device names are the same as those in a ZSM4 command line.

The INCLUDE file is opened and assembled into the current source file immediately following the INCLUDE
statement. When end-of-file is reached, assembly resumes with the statement following INCLUDE.

On the listing, a C character is printed between the assembled code and the source line on each line
assembled from an INCLUDE file.

Nested INCLUDEs are allowed up to a level of 5.

The file specified in the operand field must exist. If the file is not found, a V error (value error) is generated,
and the INCLUDE is ignored.

2.5.17 NAME

Syntax:

NAME ('modname')
NAME 'modname'

NAME defines a name for the module. Only the first six characters are significant in a module name. A
module name may also be defined with the TITLE pseudo-op. In the absence of both the NAME and TITLE
pseudo-ops, the module name is created from the source file name.

2.5.18 ORG (Define Origin)

Syntax:

ORG exp

The location counter is set to the value of exp and the assembler assigns code to memory locations starting
with that value. All names used in exp must be known on pass 1, and the value must either be absolute or
in the same area as the location counter.

15

2.5.19 PAGE, EJECT, FORM

Syntax:

PAGE [exp]
EJECT
FORM

EJECT, FORM or PAGE causes the assembler to start a new output page. The value of exp, if included in the
PAGE statement, becomes the new page size (measured in lines per page) and must be in the range 10 to
255. The default page size is 60 lines per page. The assembler puts a form feed character in the listing file
at the end of a page.

2.5.20 SUBTTL

Syntax:

SUBTTL text

SUBTTL specifies a subtitle to be listed on the line after the title (see TITLE, Section 2.5.21) on each page
heading. text is truncated after 60 characters. Any number of SUBTTLs may be given in a program.

2.5.21 TITLE

Syntax:

TITLE text

TITLE specifies a title to be listed on the first line of each page. If more than one TITLE is given, a Q error
results. The first six characters of the title are used as the module name unless a NAME pseudo operation
is used. If neither a NAME or TITLE pseudo-op is used, the module name is created from the source file
name.

2.5.22 .COMMENT

Syntax:

.COMMENT delimiter...text...delimiter

The first non-blank character encountered after .COMMENT is the delimiter. The following text comprises a
comment block which continues until the next occurrence of delimiter is encountered. For example, using
an asterisk as the delimiter, the format of the comment block would be:

.COMMENT *
any amount of text entered
here as the comment block
.
.

16

. *
;return to normal mode

2.5.23 .EVEN and .ODD

Syntax:

.EVEN

.ODD

.EVEN causes the assembler to emit a null byte (NOP instruction) if the current address is odd, so the next
instruction or data byte will be aligned to a word boundary (even address).

Likewise, .ODD causes the assembler to emit a null byte (NOP instruction) if the current address is even, so
the next instruction or data byte will be aligned to an odd address.

Note that for .EVEN and .ODD to work correctly at run time, the corresponding module must be loaded by
the linker on an even address.

2.5.24 .PRINTX

Syntax:

.PRINTX delimiter...text...delimiter

The first non-blank character encountered after .PRINTX is the delimiter. The text that follows is listed on
the terminal during assembly until another occurrence of the delimiter is encountered. .PRINTX is useful
for displaying progress through a long assembly or for displaying the value of conditional assembly
switches. For example:

IF CPM
.PRINTX /CPM version/
ENDIF

NOTE

.PRINTX will output on both passes. If only one printout is desired, use the
IF1 or IF2 pseudo-op. For example:

IF2
IF CPM
.PRINTX /CPM version/
ENDIF
ENDIF

will only print if CPM is true and ZSM4 is in pass 2.

17

2.5.25 .RADIX

Syntax:

.RADIX exp

The default base (or radix) for all constants is decimal. The .RADIX statement allows the default radix to be
changed to any base in the range of 2 to 16. For example:

LD A,0FFH
.RADIX 16
LD B,0FF

The two LDs in the example above are identical. The exp in a .RADIX statement is always in decimal radix,
regardless of the current radix.

2.5.26 .REQUEST, RQST

Syntax:

RQST filename[,filename...]
.REQUEST filename[,filename...]

.REQUEST sends a request to the linker loader to search the file names in the list for undefined globals. The
file names in the list should be in the form of legal symbols. They should not include file name extensions
or disk specifications. Normally, the linker supplies a default extension and assumes the default disk drive.

2.5.27 .Z80, .Z180, .Z280

Syntax:

.Z80

.Z180

.Z280

.Z80 enables the assembler to accept Z80 opcodes. This is the default condition. Z80 mode may also be set
by appending the /Z0 switch to the ZSM4 command string (see Section 2.2.1.)

.Z180 enables the assembler to accept Z80/HD64180 opcodes. Z180 mode may also be set by appending
the /Z1 switch to the ZSM4 command string.

.Z280 enables the assembler to accept Z280 opcodes. Z280 mode may also be set by appending the /Z2
switch to the ZSM4 command string.

18

2.5.28 Conditional Pseudo Operations

The conditional pseudo operations are:

IF/IFT exp True if exp is not 0.

IFF exp True if exp is 0.

IF1 True if pass 1.

IF2 True if pass 2.

IFZ80 True if the assembler is in Z80 mode (see Section 2.5.27.)

IFZ180 True if the assembler is in Z180 mode (see Section 2.5.27.)

IFZ280 True if the assembler is in Z280 mode (see Section 2.5.27.)

IFDEF symbol True if symbol is defined or has been declared External.

IFNDEF symbol True if symbol is undefined or not declared External.

IFB <arg> True if arg is blank. The angle brackets around arg are required.

IFNB <arg> True if arg is not blank. Used for testing when dummy
parameters are supplied. The angle brackets around arg are
required.

IFIDN <arg1>,<arg2> True if the string arg1 is IDeNtical to the string arg2. The angle
brackets around arg1 and arg2 are required.

IFDIF <arg1>,<arg2> True if the string arg1 is DIFferent from the string arg2. The angle
brackets around arg1 and arg2 are required.

All conditionals use the following format:

IFxx [argument]
 .
 .
 .
[ELSE
 .
 .
 .]
ENDIF

Conditionals may be nested to a maximum of 10 levels. Any argument to a conditional must be known on
pass 1 to avoid V errors and incorrect evaluation. For IF, IFT and IFF the expression must involve values
which were previously defined and the expression must be absolute. If the name is defined after an IFDEF
or IFNDEF, pass 1 considers the name to be undefined, but it will be defined on pass 2.

19

2.5.28.1 ELSE
Each conditional pseudo operation may optionally be used with the ELSE pseudo operation which allows
alternate code to be generated when the opposite condition exists. Only one ELSE is permitted for a given
IF, and an ELSE is always bound to the most recent, open IF. A conditional with more than one ELSE or an
ELSE without a conditional will cause a C error.

2.5.28.2 ENDIF
Each IF must have a matching ENDIF to terminate the conditional. Otherwise, a T error is generated at the
end of each pass. An ENDIF without a matching IF causes a C error.

2.5.29 Listing Control Pseudo Operations

Output to the listing file can be controlled by the LIST pseudo-op:

LIST option,option,...

If a listing is not being made, the LIST pseudo-op has no effect. Multiple options can be specified in the
same LIST statement, separated by commas. The options are the following:

OFF Suppresses the listing until a LIST ON command.

ON Turns on the listing file after a LIST OFF statement. This is the default
condition.

COND Turns on the listing of false conditional blocks. This is the default condition.

NOCOND Suppresses listing of false conditionals.

SYMBOL Generates a symbol table at the end of the listing. This is the default
condition.

NOSYMBOL Suppress printing of the symbol table at the end of the listing file.

SORT Sort the symbol table generated with the SYMBOL option. This is the default
condition.

NOSORT Do not sort the symbol table. This typically results in shorter assembly times.

MACROS List the complete macro text for all MACRO/REPT/IRP/IRPC expansions.

NOMACROS Supress listing of all text and code produced by macros.

XMACROS List only the macro source lines that generate object code. This is the default
condition.

20

For compatibility with RMAC and M80, the following list control pseudo-operators are also recognized:

.XLIST same as LIST OFF

.LIST same as LIST ON

.LALL same as LIST MACROS

.SALL same as LIST NOMACROS

.XALL same as LIST XMACROS

2.5.30 Relocation Pseudo Operations

ZSM4 supports all four relocatable areas defined by the REL object code relocatable format: ASEG
(Absolute), CSEG (Code), DSEG (Data) and named COMMONs.

The default mode for the assembler is Code Relative. That is, assembly begins with a CSEG automatically
executed and the location counter in the Code Relative mode, pointing to location 0 in the Code Relative
segment of memory. All subsequent instructions will be assembled into the Code Relative segment of
memory until a ASEG or DSEG or COMMON pseudo-op is executed. For example, the first DSEG
encountered sets the location counter to location zero in the Data Relative segment of memory. The
following code is assembled in the Data Relative segment of memory. If a subsequent CSEG is
encountered, the location counter will return to the next free location in the Code Relative segment and so
on.

The ASEG, DSEG, CSEG pseudo-ops never have operands. If you wish to alter the current value of the
location counter, use the ORG pseudo-op.

2.5.30.1 ORG Pseudo-op
At any time, the value of the location counter may be changed by use of the ORG pseudo-op. The form of
the ORG statement is:

ORG exp

where the value of exp will be the new value of the location counter in the current mode. All names used in
exp must be known on pass 1 and the value of exp must be either Absolute or in the current mode of the
location counter. For example, the statements

DSEG
ORG 50

set the Data Relative counter to 50, relative to the start of the Data Relative segment of memory.

21

2.5.31 Relocation Before Loading

Two pseudo-ops, .PHASE and .DEPHASE, allow code to be located in one area, but executed only at a
different, specified area.

For example:

 0000' .PHASE 100H
 0100 CD 0106 FOO: CALL BAZ
 0103 C3 0007' JP ZOO
 0106 C9 BAZ: RET
 .DEPHASE
 0007' C3 0005 ZOO: JP 5

All labels within a .PHASE block are defined as the absolute value from the origin of the phase area. The
code, however, is loaded in the current area (i.e., from 0000' in this example). The code within the block can
later be moved to 100H and executed.

2.6 MACROS and Block Pseudo Operations
The macro facilities provided by ZSM4 include three repeat pseudo operations: repeat (REPT), indefinite
repeat (IRP), and indefinite repeat character (IRPC). A macro definition operation (MACRO) is also provided.
Each of these four macro operations is terminated by the ENDM pseudo operation.

2.6.1 Terms

For the purposes of discussion of macros and block operations, the following terms will be used:

1. dummy is used to represent a dummy parameter. All dummy parameters are legal symbols that
appear in the body of a macro expansion.

2. dummylist is a list of dummys separated by commas.

3. arglist is a list of arguments separated by commas. arglist must be delimited by angle brackets. Two
angle brackets with no intervening characters (<>) or two commas with no intervening characters
enter a null argument in the list. Otherwise an argument is a character or series of characters
terminated by a comma or >. With angle brackets that are nested inside an arglist, one level of
brackets is removed each time the bracketed argument is used in an arglist (see example, Section
2.6.5.) A quoted string is an acceptable argument and is passed as such. Unless enclosed in
brackets or a quoted string, leading and trailing spaces are deleted from arguments.

4. paramlist is used to represent a list of actual parameters separated by commas. No delimiters are
required (the list is terminated by the end of line or a comment), but the rules for entering null
parameters and nesting brackets are the same as described for arglist (see example, Section 2.6.5.)

22

2.6.2 REPT-ENDM

Syntax:

REPT exp
 .
 .
 .
ENDM

The block of statements between REPT and ENDM is repeated exp times. exp is evaluated as a 16-bit
unsigned number. If exp contains any external or undefined terms, an error is generated. Example:

X DEFL 0
REPT 10 ;generates DB 1 - DB 10

X DEFL X+1
DB X
ENDM

2.6.3 IRP-ENDM

Syntax:

IRP dummy,<arglist>
 .
 .
 .
ENDM

The arglist must be enclosed in angle brackets. The number of arguments in the arglist determines the
number of times the block of statements is repeated. Each repetition substitutes the next item in the
arglist for every occurrence of dummy in the block. If the arglist is null (i.e., <>), the block is processed once
with each occurrence of dummy removed. For example:

IRP X,<1,2,3,4,5,6,7,8,9,10>
DB X
ENDM

generates the same bytes as the REPT example.

2.6.4 IRPC-ENDM

Syntax:

IRPC dummy,[<]string[>]
 .
 .
 .
ENDM

IRPC is similar to IRP but the arglist is replaced by a string of text and the angle brackets around the string

23

are optional. The statements in the block are repeated once for each character in the string. Each
repetition substitutes the next character in the string for every occurrence of dummy in the block. For
example:

IRPC X,0123456789
DB X+1
ENDM

generates the same code as the two previous examples.

2.6.5 MACRO

Often it is convenient to be able to generate a given sequence of statements from various places in a
program, even though different parameters may be required each time the sequence is used. This
capability is provided by the MACRO statement.

The form is

name MACRO dummylist
 .
 .
 .
ENDM

where name conforms to the rules for forming symbols and is the name that will be used to invoke the
macro. The dummys in dummylist are the parameters that will be changed (replaced) each time the MACRO
is invoked. The statements before the ENDM comprise the body of the macro. During assembly, the macro
is expanded every time it is invoked but, unlike REPT/IRP/IRPC, the macro is not expanded when it is
encountered.

The form of a macro call is

name paramlist

where name is the name supplied in the MACRO definition, and the parameters in paramlist will replace the
dummys in the MACRO dummylist on a one-to-one basis. The number of items in dummylist and paramlist is
limited only by the length of a line. The number of parameters used when the macro is called need not be
the same as the number of dummys in dummylist. If there are more parameters than dummys, the extras
are ignored. If there are fewer, the extra dummys will be made null. The assembled code will contain the
macro expansion code after each macro call.

NOTE

A dummy parameter in a MACRO/REPT/IRP/IRPC is always recognized
exclusively as a dummy parameter. Register names such as A and B will be
changed in the expansion if they were used as dummy parameters.

Here is an example of a MACRO definition that defines a macro called FOO:

24

FOO MACRO X
Y DEFL 0
 REPT X
Y DEFL Y+1
 DB Y
 ENDM
 ENDM

This macro generates the same code as the previous three examples when the call

 FOO 10

is executed.

Another example, which generates the same code, illustrates the removal of one level of brackets when an
argument is used as an arglist:

FOO MACRO X
 IRP Y,<X>
 DB Y
 ENDM
 ENDM

When the call

 FOO <1,2,3,4,5,6,7,8,9,10>

is made, the macro expansion looks like this:

 IRP Y,<1,2,3,4,5,6,7,8,9,10>
 DB Y
 ENDM

2.6.6 ENDM

Every REPT, IRP, IRPC and MACRO pseudo-op must be terminated with the ENDM pseudo-op. Otherwise a
T error is generated at the end of each pass. An unmatched ENDM causes an O error.

2.6.7 EXITM

The EXITM pseudo-op is used to terminate a REPT/IRP/IRPC or MACRO call. When an EXITM is executed, the
expansion is exited immediately and any remaining expansion or repetition is not generated. If the block
containing the EXITM is nested within another block, the outer level continues to be expanded.

2.6.8 LOCAL

Syntax:

LOCAL dummylist

25

The LOCAL pseudo-op is allowed only inside a MACRO definition. When LOCAL is executed, the assembler
creates a unique symbol for each dummy in dummylist and substitutes that symbol for each occurrence of
the dummy in the expansion. These unique symbols are usually used to define a label within a macro, thus
eliminating multiply-defined labels on successive expansions of the macro. The symbols created by the
assembler range from ??0001 to ??FFFF. Users will therefore want to avoid the term ??nnnn for their
own symbols. If LOCAL statements are used, they must be the first statements in the macro definition.

2.6.9 Special Macro Operators and Forms

& The ampersand is used in a macro expansion to concatenate text or symbols. A
dummy parameter that is in a quoted string will not be substituted in the expansion
unless it is immediately preceded by &. To form a symbol from text and a dummy,
put & between them. For example:

ERRGEN MACRO X
ERROR&X:PUSH BC
 LD C,'&X'
 JP ERROR
 ENDM

In this example, the call ERRGEN A will generate:

ERRORA: PUSH BC
 LD C,'A'
 JP ERROR

;; In a block operation, a comment preceded by two semicolons is not saved as part of
the expansion (i.e., it will not appear on the listing even under .LALL). A comment
preceded by one semicolon, however, will be preserved and appear in the
expansion.

! When an exclamation point is used in an argument, the next character is entered
literally (i.e., !; and <;> are equivalent).

NUL NUL is an operator that returns true if its argument (a parameter) is null. The
remainder of a line after NUL is considered to be the argument to NUL. The
conditional

IF NUL argument

is false if, during the expansion, the first character of the argument is anything other
than a semicolon or carriage return. It is recommended that testing for null
parameters be done using the IFB and IFNB conditionals.

% The percent sign is used only in a macro argument. % converts the expression that
follows it (usually a symbol) to a number in the current radix. During macro
expansion, the number derived from converting the expression is substituted for the
dummy. Using the % special operator allows a macro call by value. (Usually, a macro

26

call is a call by reference with the text of the macro argument substituting exactly for
the dummy.)

The expression following the % must conform to the same rules as the DS (Define
Space) pseudo-op. A valid expression returning a non-relocatable constant is
required.

In the example below, LB (the argument to MAKLAB) would normally be substituted
for Y (the argument to MACRO) as a string. However, the % causes LB to be
converted to a non-relocatable constant which is then substituted for Y. Without the
% special operator, the result of assembly would be 'Error LB' rather than 'Error 1',
etc.

MAKLAB MACRO Y
ERR&Y: DB 'Error &Y',0
 ENDM
MAKERR MACRO X
LB DEFL 0
 REPT X
LB DEFL LB+1
 MAKLAB %LB
 ENDM
 ENDM

When invoked as MAKERR 3, the assembler will generate:

ERR1: DB 'Error 1',0
ERR2: DB 'Error 2',0
ERR3: DB 'Error 3',0

2.7 ZSM4 Errors
ZSM4 errors are indicated by a one-character flag in column one of the listing file. If a listing file is not
being printed on the terminal, each erroneous line is also printed or displayed on the terminal. Below is a
list of the ZSM4 Error Codes:

A Too many IF statements
Maximum conditional nesting level reached.

B ENDIF without IF statement

C ELSE without IF statement

D Relative jump range error

E Expression error
Invalid operator, two consecutive operators, etc.

27

L Invalid identifier
Identifier contains invalid characters.

M Multiply Defined symbol

N Illegal opcode

O Bad opcode or objectionable syntax
ENDM, LOCAL outside a block; DELF, EQU or MACRO without a name; bad syntax in
an opcode; or bad syntax in an expression (mismatched parenthesis, quotes,
consecutive operators, etc.).

P Phase error
Value of a Label or EQU name is different on pass 2.

Q Missing closing quote
An improperly closed string in a DB statement, etc.

R Relocation error
Illegal use of relocation in expression, such as abs-rel. Data, code and COMMON
areas are relocatable.

T Missing ENDM or ENDIF
Normally appears at the end of the listing, indicating an unterminated conditional or
macro.

U Undefined symbol
A symbol referenced in an expression is not defined.

V Value error

W Symbol table overflow

Z Divide by zero
The expression being evaluated contains a division by zero.

2.8 Compatibility with other assemblers
Care has been taken to make ZSM4 as compatible as possible with Microsoft's M80 and Digital Research's
RMAC. There are, however, some differences, which are listed below:

• The .TFCOND pseudo-operator (toggle listing of false conditionals) is not implemented.

• ZSM4 allows several TITLE pseudo-operators to appear in the source file, while M80 allows only
one.

• If no NAME pseudo-operator is specified, M80 uses the first word of the TITLE statement as the

28

default module name, whereas ZSM4 uses the source file name.

• ZSM4 stores up to 8 characters of symbol names in REL files (see the /Sn option switch in Section
2.2.1), whereas both M80 and RMAC store up to 6.

• ZSM4 does not support REL format extensions like M80 3.44 or SLR do. Only few linkers support
them, anyway.

• The byte order of character constants comprised of two characters is the same as in RMAC, but in
M80 is the opposite (see Section 2.3.3). Thus, a statement like

LD HL,'AB'

will load the L register with 'A' and H with 'B'.

2.9 Additional notes
The Z280 mode has a few caveats:

• The operand of instructions that accept either an 8- or 16-bit value or displacement must be known
on pass 1. Examples of such instructions are:

ADD A,(IX+d8) and ADD A,(IX+d16)
LD (HL),d8 and LD (HL),d16
etc.

That's because the different forms of the same instruction generate different opcodes and/or have
different length. If the operand is not known on pass 1, then the assembler will have to guess or to
chose arbitrarily one of the forms; when the operand size is finally know on pass 2, a phase error
will occur if its size does not match the one guessed during pass 1. In order to eliminate such
restriction, the assembler would have to perform additional passes over the source code,
becoming more complicated and slower.

• As described in the Z280 Manual, the syntax of the four Extended Instructions EPUF, EPUI, EPUM
and MEPU is not clear. The instructions require a four-byte template argument which is loaded
into, or decoded by, the co-processor. The Z280 Manual even specifies a format for it, but nowhere
is a description or an example of how the instruction mnemonic actually looks like. Even when the
template is destined for the co-processor, the Z280 CPU may decode part of it. In particular, the
number of bytes to be transferred by the EPUM and MEPU instructions is extracted from the fourth
template byte, and thus it looks like the template ought to be part of the instruction mnemonic.

In this version of ZSM4, the template bytes are specified separately from the instruction and
therefore is up to the user to follow the appropriate format. For example:

EPUM (HL)
DEFB t1,t2,t3,t4

where t1, t2, t3 and t4 are the template bytes.

• The .EVEN and .ODD alignment pseudo-operators (see section 2.5.23) require appropriate linker
support. Specifically, any code or data segment using these pseudo-operators must start on an

29

even address boundary. If the linker has no provision for such feature, then the same result can be
achieved by making all segments to be linked of even size, and linking the final program starting on
an even address. To ensure that all segments have an even size, end them with an .EVEN pseudo-
operator.

30

A Operation under CP/M

The ZSM4 CP/M executable has a size of nearly 22 Kbytes, and therefore a system with large TPA is
recommended for running the assembler, especially if large source files are to be assembled or if the
sources use a large number of MACROs. On the plus side, the symbol table format is much more compact
than that of e.g. M80.

File specifications follow the standard CP/M convention:

drive:filename.ext

Only filename is required, all other fields are optional and default to the following values:

drive the current drive

ext MAC for the source, REL for the object output and PRN for the listing file

If no command line is present, the assembler will enter interactive mode and prompt for a command line:

A>ZSM4
Z80/Z180/Z280 Macro-Assembler V4.3

*

In interactive mode several commands can be entered to process several files without having to reload the
assembler every time.

Under CP/M 3.0 and MP/M, the date and time of assembly is shown on the listing output.

31

B Operation under RSX180

ZSM4 is built with a default task name of ...MAC; a different name can be specified in the INStall
command, for example:

INS ZSM4/TASK=...ZSM

The task is also built with a default memory increment amount of 8000 bytes, which should be enough for
assembling small to medium-sized files. However, for large files specifying a larger memory increment via
the INStall command is not necessary, since the assembler can request automatically more memory from
the system if/as it becomes necessary. If the request is not granted, and error will be displayed.

File specifications follow the standard RSX180 convention:

dev:[directory]filename.ext;vers

Note that the square brackets above are part of the syntax and therefore required when specifying a
directory. Only filename is required, all other fields are optional and default to the following values:

dev SY0: (the user's login device)

directory the current user's directory

ext MAC for the source, OBJ for the object output and LST for the listing file

vers highest (latest) version of the file.

If the task has been installed, it can be invoked by entering its installed task name, e.g.

MAC [command]

when not installed, the task can be invoked using the RUN command, for example:

RUN $ZSM4

If no command line is present, the assembler will enter interactive mode and prompt for a command line:

>MAC
MAC>

ZSM4 also supports indirect command files under RSX180 the standard way:

MAC @filespec

where filespec is a valid command file specification. If no extension is specified, CMD is assumed. The
command file simply contains a list of commands to be executed by ZSM4, one per line, and can in turn
include calls to additional command files up to a nesting level of 3.

32

C Operation under UZI180

Since UZI180 has an embedded CP/M emulator, the CP/M version of ZSM4 can be run directly from the
UZI180 shell prompt. The usual limitation of the 8.3 CP/M filename format applies.

A native UZI180 version of ZSM4 is currently under development.

33

D Operation under Linux or Windows

The CP/M version of ZSM4 can be used for cross-assembly on a Linux or Windows system by using John
Elliott's zxcc program (http://www.seasip.demon.co.uk/Unix/Zxcc/index.html). Zxcc emulates both a Z80
and a CP/M environment in a way such that a CP/M application can be run from the Linux or Windows
command prompt as if it was a native application.

Since ZSM accepts source files with both CP/M and Unix end-line conventions, no conversion to the CP/M
format is necessary.

Being a CP/M program, a few restrictions apply:

• File names are limited to the 8.3 format, and specified in lowercase letters.

• If the source files INCLUDE additional files (see Section 2.5.16), then the zxcc command invoking
ZSM4 must be run in the directory where the include files are.

• Options switches must be escaped properly (see the zxcc documentation for details), or else the
Unix shell may interpret them as directory specifications.

Examples:

zxcc zsm4 test,test=test

zxcc zsm4 -”=test/L”

Note how the whole command in the second example is escaped, since it contains the /L option switch.

Zxcc allows invoking ZSM4 from a Makefile, for example:

.PREFIX:

.PREFIX: .mac .rel

SRCS = main.mac functions.mac misc.mac
OBJS = $(SRCS:.mac=.rel)

all: example.com

$(OBJS): %.rel: %.mac *.inc
 zxcc zsm4 -"=$</l"

example.com: $(OBJS) mylib.lib
 zxcc link -"$@=main,functions,misc,mylib.lib[s]"

34

http://www.seasip.demon.co.uk/Unix/Zxcc/index.html

	1 Introduction
	2 Running ZSM4
	2.1 Invoking the assembler
	2.2 Command format
	2.2.1 Option switches

	2.3 Source file format
	2.3.1 Statements
	2.3.2 Symbols
	2.3.3 Numeric Constants
	2.3.4 Strings

	2.4 Expression Evaluation
	2.4.1 Arithmetic and Logical Operators
	2.4.2 Modes
	2.4.3 Externals

	2.5 Pseudo operators
	2.5.1 ASEG
	2.5.2 COMMON
	2.5.3 CSEG
	2.5.4 DEFB, DEFM, DB (Define Byte)
	2.5.5 DEFC, DC (Define Character)
	2.5.6 DEFL, ASET (Define Label)
	2.5.7 DEFS, DS (Define Space)
	2.5.8 DEFW, DW (Define Word)
	2.5.9 DEFZ (Define Zero-terminated string)
	2.5.10 DSEG
	2.5.11 END
	2.5.12 ENTRY, GLOBAL, PUBLIC
	2.5.13 EQU
	2.5.14 EXT, EXTRN
	2.5.15 IDENT
	2.5.16 INCLUDE, MACLIB
	2.5.17 NAME
	2.5.18 ORG (Define Origin)
	2.5.19 PAGE, EJECT, FORM
	2.5.20 SUBTTL
	2.5.21 TITLE
	2.5.22 .COMMENT
	2.5.23 .EVEN and .ODD
	2.5.24 .PRINTX
	2.5.25 .RADIX
	2.5.26 .REQUEST, RQST
	2.5.27 .Z80, .Z180, .Z280
	2.5.28 Conditional Pseudo Operations
	2.5.28.1 ELSE
	2.5.28.2 ENDIF

	2.5.29 Listing Control Pseudo Operations
	2.5.30 Relocation Pseudo Operations
	2.5.30.1 ORG Pseudo-op

	2.5.31 Relocation Before Loading

	2.6 MACROS and Block Pseudo Operations
	2.6.1 Terms
	2.6.2 REPT-ENDM
	2.6.3 IRP-ENDM
	2.6.4 IRPC-ENDM
	2.6.5 MACRO
	2.6.6 ENDM
	2.6.7 EXITM
	2.6.8 LOCAL
	2.6.9 Special Macro Operators and Forms

	2.7 ZSM4 Errors
	2.8 Compatibility with other assemblers
	2.9 Additional notes

	A Operation under CP/M
	B Operation under RSX180
	C Operation under UZI180
	D Operation under Linux or Windows

