1
       2
       3
       4
       5
       6
       7
       8
       9
      10
      11
      12
      13
      14
      15
      16
      17
      18
      19
      20
      21
      22
      23
      24
      25
      26
      27
      28
      29
      30
      31
      32
      33
      34
      35
      36
      37
      38
      39
      40
      41
      42
      43
      44
      45
      46
      47
      48
      49
      50
      51
      52
      53
      54
      55
      56
      57
      58
      59
      60
      61
      62
      63
      64
      65
      66
      67
      68
      69
      70
      71
      72
      73
      74
      75
      76
      77
      78
      79
      80
      81
      82
      83
      84
      85
      86
      87
      88
      89
      90
      91
      92
      93
      94
      95
      96
      97
      98
      99
     100
     101
     102
     103
     104
     105
     106
     107
     108
     109
     110
     111
     112
     113
     114
     115
     116
     117
     118
     119
     120
     121
     122
     123
     124
     125
     126
     127
     128
     129
     130
     131
     132
     133
     134
     135
     136
     137
     138
     139
     140
     141
     142
     143
     144
     145
     146
     147
     148
     149
     150
     151
     152
     153
     154
     155
     156
     157
     158
     159
     160
     161
     162
     163
     164
     165
     166
     167
     168
     169
     170
     171
     172
     173
     174
     175
     176
     177
     178
     179
     180
     181
     182
     183
     184
     185
     186
     187
     188
     189
     190
     191
     192
     193
     194
     195
     196
     197
     198
     199
     200
     201
     202
     203
     204
     205
     206
     207
     208
     209
     210
     211
     212
     213
     214
     215
     216
     217
     218
     219
     220
     221
     222
     223
     224
     225
     226
     227
     228
     229
     230
     231
     232
     233
     234
     235
     236
     237
     238
     239
     240
     241
     242
     243
     244
     245
     246
     247
     248
     249
     250
     251
     252
     253
     254
     255
     256
     257
     258
     259
     260
     261
     262
     263
     264
     265
     266
     267
     268
     269
     270
     271
     272
     273
     274
     275
     276
     277
     278
     279
     280
     281
     282
     283
     284
     285
     286
     287
     288
     289
     290
     291
     292
     293
     294
     295
     296
     297
     298
     299
     300
     301
     302
     303
     304
     305
     306
     307
     308
     309
     310
     311
     312
     313
     314
     315
     316
     317
     318
     319
     320
     321
     322
     323
     324
     325
     326
     327
     328
     329
     330
     331
     332
     333
     334
     335
     336
     337
     338
     339
     340
     341
     342
     343
     344
     345
     346
     347
     348
     349
     350
     351
     352
     353
     354
     355
     356
     357
     358
     359
     360
     361
     362
     363
     364
     365
     366
     367
     368
     369
     370
      SUBROUTINE CTBSV(UPLO,TRANS,DIAG,N,K,A,LDA,X,INCX)
*     .. Scalar Arguments ..
      INTEGER INCX,K,LDA,N
      CHARACTER DIAG,TRANS,UPLO
*     ..
*     .. Array Arguments ..
      COMPLEX A(LDA,*),X(*)
*     ..
*
*  Purpose
*  =======
*
*  CTBSV  solves one of the systems of equations
*
*     A*x = b,   or   A**T*x = b,   or   A**H*x = b,
*
*  where b and x are n element vectors and A is an n by n unit, or
*  non-unit, upper or lower triangular band matrix, with ( k + 1 )
*  diagonals.
*
*  No test for singularity or near-singularity is included in this
*  routine. Such tests must be performed before calling this routine.
*
*  Arguments
*  ==========
*
*  UPLO   - CHARACTER*1.
*           On entry, UPLO specifies whether the matrix is an upper or
*           lower triangular matrix as follows:
*
*              UPLO = 'U' or 'u'   A is an upper triangular matrix.
*
*              UPLO = 'L' or 'l'   A is a lower triangular matrix.
*
*           Unchanged on exit.
*
*  TRANS  - CHARACTER*1.
*           On entry, TRANS specifies the equations to be solved as
*           follows:
*
*              TRANS = 'N' or 'n'   A*x = b.
*
*              TRANS = 'T' or 't'   A**T*x = b.
*
*              TRANS = 'C' or 'c'   A**H*x = b.
*
*           Unchanged on exit.
*
*  DIAG   - CHARACTER*1.
*           On entry, DIAG specifies whether or not A is unit
*           triangular as follows:
*
*              DIAG = 'U' or 'u'   A is assumed to be unit triangular.
*
*              DIAG = 'N' or 'n'   A is not assumed to be unit
*                                  triangular.
*
*           Unchanged on exit.
*
*  N      - INTEGER.
*           On entry, N specifies the order of the matrix A.
*           N must be at least zero.
*           Unchanged on exit.
*
*  K      - INTEGER.
*           On entry with UPLO = 'U' or 'u', K specifies the number of
*           super-diagonals of the matrix A.
*           On entry with UPLO = 'L' or 'l', K specifies the number of
*           sub-diagonals of the matrix A.
*           K must satisfy  0 .le. K.
*           Unchanged on exit.
*
*  A      - COMPLEX          array of DIMENSION ( LDA, n ).
*           Before entry with UPLO = 'U' or 'u', the leading ( k + 1 )
*           by n part of the array A must contain the upper triangular
*           band part of the matrix of coefficients, supplied column by
*           column, with the leading diagonal of the matrix in row
*           ( k + 1 ) of the array, the first super-diagonal starting at
*           position 2 in row k, and so on. The top left k by k triangle
*           of the array A is not referenced.
*           The following program segment will transfer an upper
*           triangular band matrix from conventional full matrix storage
*           to band storage:
*
*                 DO 20, J = 1, N
*                    M = K + 1 - J
*                    DO 10, I = MAX( 1, J - K ), J
*                       A( M + I, J ) = matrix( I, J )
*              10    CONTINUE
*              20 CONTINUE
*
*           Before entry with UPLO = 'L' or 'l', the leading ( k + 1 )
*           by n part of the array A must contain the lower triangular
*           band part of the matrix of coefficients, supplied column by
*           column, with the leading diagonal of the matrix in row 1 of
*           the array, the first sub-diagonal starting at position 1 in
*           row 2, and so on. The bottom right k by k triangle of the
*           array A is not referenced.
*           The following program segment will transfer a lower
*           triangular band matrix from conventional full matrix storage
*           to band storage:
*
*                 DO 20, J = 1, N
*                    M = 1 - J
*                    DO 10, I = J, MIN( N, J + K )
*                       A( M + I, J ) = matrix( I, J )
*              10    CONTINUE
*              20 CONTINUE
*
*           Note that when DIAG = 'U' or 'u' the elements of the array A
*           corresponding to the diagonal elements of the matrix are not
*           referenced, but are assumed to be unity.
*           Unchanged on exit.
*
*  LDA    - INTEGER.
*           On entry, LDA specifies the first dimension of A as declared
*           in the calling (sub) program. LDA must be at least
*           ( k + 1 ).
*           Unchanged on exit.
*
*  X      - COMPLEX          array of dimension at least
*           ( 1 + ( n - 1 )*abs( INCX ) ).
*           Before entry, the incremented array X must contain the n
*           element right-hand side vector b. On exit, X is overwritten
*           with the solution vector x.
*
*  INCX   - INTEGER.
*           On entry, INCX specifies the increment for the elements of
*           X. INCX must not be zero.
*           Unchanged on exit.
*
*  Further Details
*  ===============
*
*  Level 2 Blas routine.
*
*  -- Written on 22-October-1986.
*     Jack Dongarra, Argonne National Lab.
*     Jeremy Du Croz, Nag Central Office.
*     Sven Hammarling, Nag Central Office.
*     Richard Hanson, Sandia National Labs.
*
*  =====================================================================
*
*     .. Parameters ..
      COMPLEX ZERO
      PARAMETER (ZERO= (0.0E+0,0.0E+0))
*     ..
*     .. Local Scalars ..
      COMPLEX TEMP
      INTEGER I,INFO,IX,J,JX,KPLUS1,KX,L
      LOGICAL NOCONJ,NOUNIT
*     ..
*     .. External Functions ..
      LOGICAL LSAME
      EXTERNAL LSAME
*     ..
*     .. External Subroutines ..
      EXTERNAL XERBLA
*     ..
*     .. Intrinsic Functions ..
      INTRINSIC CONJG,MAX,MIN
*     ..
*
*     Test the input parameters.
*
      INFO = 0
      IF (.NOT.LSAME(UPLO,'U'.AND. .NOT.LSAME(UPLO,'L')) THEN
          INFO = 1
      ELSE IF (.NOT.LSAME(TRANS,'N'.AND. .NOT.LSAME(TRANS,'T'.AND.
     +         .NOT.LSAME(TRANS,'C')) THEN
          INFO = 2
      ELSE IF (.NOT.LSAME(DIAG,'U'.AND. .NOT.LSAME(DIAG,'N')) THEN
          INFO = 3
      ELSE IF (N.LT.0THEN
          INFO = 4
      ELSE IF (K.LT.0THEN
          INFO = 5
      ELSE IF (LDA.LT. (K+1)) THEN
          INFO = 7
      ELSE IF (INCX.EQ.0THEN
          INFO = 9
      END IF
      IF (INFO.NE.0THEN
          CALL XERBLA('CTBSV ',INFO)
          RETURN
      END IF
*
*     Quick return if possible.
*
      IF (N.EQ.0RETURN
*
      NOCONJ = LSAME(TRANS,'T')
      NOUNIT = LSAME(DIAG,'N')
*
*     Set up the start point in X if the increment is not unity. This
*     will be  ( N - 1 )*INCX  too small for descending loops.
*
      IF (INCX.LE.0THEN
          KX = 1 - (N-1)*INCX
      ELSE IF (INCX.NE.1THEN
          KX = 1
      END IF
*
*     Start the operations. In this version the elements of A are
*     accessed by sequentially with one pass through A.
*
      IF (LSAME(TRANS,'N')) THEN
*
*        Form  x := inv( A )*x.
*
          IF (LSAME(UPLO,'U')) THEN
              KPLUS1 = K + 1
              IF (INCX.EQ.1THEN
                  DO 20 J = N,1,-1
                      IF (X(J).NE.ZERO) THEN
                          L = KPLUS1 - J
                          IF (NOUNIT) X(J) = X(J)/A(KPLUS1,J)
                          TEMP = X(J)
                          DO 10 I = J - 1,MAX(1,J-K),-1
                              X(I) = X(I) - TEMP*A(L+I,J)
   10                     CONTINUE
                      END IF
   20             CONTINUE
              ELSE
                  KX = KX + (N-1)*INCX
                  JX = KX
                  DO 40 J = N,1,-1
                      KX = KX - INCX
                      IF (X(JX).NE.ZERO) THEN
                          IX = KX
                          L = KPLUS1 - J
                          IF (NOUNIT) X(JX) = X(JX)/A(KPLUS1,J)
                          TEMP = X(JX)
                          DO 30 I = J - 1,MAX(1,J-K),-1
                              X(IX) = X(IX) - TEMP*A(L+I,J)
                              IX = IX - INCX
   30                     CONTINUE
                      END IF
                      JX = JX - INCX
   40             CONTINUE
              END IF
          ELSE
              IF (INCX.EQ.1THEN
                  DO 60 J = 1,N
                      IF (X(J).NE.ZERO) THEN
                          L = 1 - J
                          IF (NOUNIT) X(J) = X(J)/A(1,J)
                          TEMP = X(J)
                          DO 50 I = J + 1,MIN(N,J+K)
                              X(I) = X(I) - TEMP*A(L+I,J)
   50                     CONTINUE
                      END IF
   60             CONTINUE
              ELSE
                  JX = KX
                  DO 80 J = 1,N
                      KX = KX + INCX
                      IF (X(JX).NE.ZERO) THEN
                          IX = KX
                          L = 1 - J
                          IF (NOUNIT) X(JX) = X(JX)/A(1,J)
                          TEMP = X(JX)
                          DO 70 I = J + 1,MIN(N,J+K)
                              X(IX) = X(IX) - TEMP*A(L+I,J)
                              IX = IX + INCX
   70                     CONTINUE
                      END IF
                      JX = JX + INCX
   80             CONTINUE
              END IF
          END IF
      ELSE
*
*        Form  x := inv( A**T )*x  or  x := inv( A**H )*x.
*
          IF (LSAME(UPLO,'U')) THEN
              KPLUS1 = K + 1
              IF (INCX.EQ.1THEN
                  DO 110 J = 1,N
                      TEMP = X(J)
                      L = KPLUS1 - J
                      IF (NOCONJ) THEN
                          DO 90 I = MAX(1,J-K),J - 1
                              TEMP = TEMP - A(L+I,J)*X(I)
   90                     CONTINUE
                          IF (NOUNIT) TEMP = TEMP/A(KPLUS1,J)
                      ELSE
                          DO 100 I = MAX(1,J-K),J - 1
                              TEMP = TEMP - CONJG(A(L+I,J))*X(I)
  100                     CONTINUE
                          IF (NOUNIT) TEMP = TEMP/CONJG(A(KPLUS1,J))
                      END IF
                      X(J) = TEMP
  110             CONTINUE
              ELSE
                  JX = KX
                  DO 140 J = 1,N
                      TEMP = X(JX)
                      IX = KX
                      L = KPLUS1 - J
                      IF (NOCONJ) THEN
                          DO 120 I = MAX(1,J-K),J - 1
                              TEMP = TEMP - A(L+I,J)*X(IX)
                              IX = IX + INCX
  120                     CONTINUE
                          IF (NOUNIT) TEMP = TEMP/A(KPLUS1,J)
                      ELSE
                          DO 130 I = MAX(1,J-K),J - 1
                              TEMP = TEMP - CONJG(A(L+I,J))*X(IX)
                              IX = IX + INCX
  130                     CONTINUE
                          IF (NOUNIT) TEMP = TEMP/CONJG(A(KPLUS1,J))
                      END IF
                      X(JX) = TEMP
                      JX = JX + INCX
                      IF (J.GT.K) KX = KX + INCX
  140             CONTINUE
              END IF
          ELSE
              IF (INCX.EQ.1THEN
                  DO 170 J = N,1,-1
                      TEMP = X(J)
                      L = 1 - J
                      IF (NOCONJ) THEN
                          DO 150 I = MIN(N,J+K),J + 1,-1
                              TEMP = TEMP - A(L+I,J)*X(I)
  150                     CONTINUE
                          IF (NOUNIT) TEMP = TEMP/A(1,J)
                      ELSE
                          DO 160 I = MIN(N,J+K),J + 1,-1
                              TEMP = TEMP - CONJG(A(L+I,J))*X(I)
  160                     CONTINUE
                          IF (NOUNIT) TEMP = TEMP/CONJG(A(1,J))
                      END IF
                      X(J) = TEMP
  170             CONTINUE
              ELSE
                  KX = KX + (N-1)*INCX
                  JX = KX
                  DO 200 J = N,1,-1
                      TEMP = X(JX)
                      IX = KX
                      L = 1 - J
                      IF (NOCONJ) THEN
                          DO 180 I = MIN(N,J+K),J + 1,-1
                              TEMP = TEMP - A(L+I,J)*X(IX)
                              IX = IX - INCX
  180                     CONTINUE
                          IF (NOUNIT) TEMP = TEMP/A(1,J)
                      ELSE
                          DO 190 I = MIN(N,J+K),J + 1,-1
                              TEMP = TEMP - CONJG(A(L+I,J))*X(IX)
                              IX = IX - INCX
  190                     CONTINUE
                          IF (NOUNIT) TEMP = TEMP/CONJG(A(1,J))
                      END IF
                      X(JX) = TEMP
                      JX = JX - INCX
                      IF ((N-J).GE.K) KX = KX - INCX
  200             CONTINUE
              END IF
          END IF
      END IF
*
      RETURN
*
*     End of CTBSV .
*
      END