1
       2
       3
       4
       5
       6
       7
       8
       9
      10
      11
      12
      13
      14
      15
      16
      17
      18
      19
      20
      21
      22
      23
      24
      25
      26
      27
      28
      29
      30
      31
      32
      33
      34
      35
      36
      37
      38
      39
      40
      41
      42
      43
      44
      45
      46
      47
      48
      49
      50
      51
      52
      53
      54
      55
      56
      57
      58
      59
      60
      61
      62
      63
      64
      65
      66
      67
      68
      69
      70
      71
      72
      73
      74
      75
      76
      77
      78
      79
      80
      81
      82
      83
      84
      85
      86
      87
      88
      89
      90
      91
      92
      93
      94
      95
      96
      97
      98
      99
     100
     101
     102
     103
     104
     105
     106
     107
     108
     109
     110
     111
     112
     113
     114
     115
     116
     117
     118
     119
     120
     121
     122
     123
     124
     125
     126
     127
     128
     129
     130
     131
     132
     133
     134
     135
     136
     137
     138
     139
     140
     141
     142
     143
     144
     145
     146
     147
     148
     149
     150
     151
     152
     153
     154
     155
     156
     157
     158
     159
     160
     161
     162
     163
     164
     165
     166
     167
     168
     169
     170
     171
     172
     173
     174
     175
     176
     177
     178
     179
     180
     181
     182
     183
     184
     185
     186
     187
     188
     189
     190
     191
     192
     193
     194
     195
     196
     197
     198
     199
     200
     201
     202
     203
     204
     205
     206
     207
     208
     209
     210
     211
     212
     213
     214
     215
     216
     217
     218
     219
     220
     221
     222
     223
     224
     225
     226
     227
     228
     229
     230
     231
     232
     233
     234
     235
     236
     237
     238
     239
     240
     241
     242
     243
     244
     245
     246
     247
     248
     249
     250
     251
     252
     253
     254
     255
     256
     257
     258
     259
     260
     261
     262
     263
     264
     265
     266
     267
     268
     269
     270
     271
     272
     273
     274
     275
     276
     277
     278
     279
     280
     281
     282
     283
     284
     285
     286
     287
     288
     289
     290
     291
     292
     293
     294
     295
     296
     297
      SUBROUTINE SSYMM(SIDE,UPLO,M,N,ALPHA,A,LDA,B,LDB,BETA,C,LDC)
*     .. Scalar Arguments ..
      REAL ALPHA,BETA
      INTEGER LDA,LDB,LDC,M,N
      CHARACTER SIDE,UPLO
*     ..
*     .. Array Arguments ..
      REAL A(LDA,*),B(LDB,*),C(LDC,*)
*     ..
*
*  Purpose
*  =======
*
*  SSYMM  performs one of the matrix-matrix operations
*
*     C := alpha*A*B + beta*C,
*
*  or
*
*     C := alpha*B*A + beta*C,
*
*  where alpha and beta are scalars,  A is a symmetric matrix and  B and
*  C are  m by n matrices.
*
*  Arguments
*  ==========
*
*  SIDE   - CHARACTER*1.
*           On entry,  SIDE  specifies whether  the  symmetric matrix  A
*           appears on the  left or right  in the  operation as follows:
*
*              SIDE = 'L' or 'l'   C := alpha*A*B + beta*C,
*
*              SIDE = 'R' or 'r'   C := alpha*B*A + beta*C,
*
*           Unchanged on exit.
*
*  UPLO   - CHARACTER*1.
*           On  entry,   UPLO  specifies  whether  the  upper  or  lower
*           triangular  part  of  the  symmetric  matrix   A  is  to  be
*           referenced as follows:
*
*              UPLO = 'U' or 'u'   Only the upper triangular part of the
*                                  symmetric matrix is to be referenced.
*
*              UPLO = 'L' or 'l'   Only the lower triangular part of the
*                                  symmetric matrix is to be referenced.
*
*           Unchanged on exit.
*
*  M      - INTEGER.
*           On entry,  M  specifies the number of rows of the matrix  C.
*           M  must be at least zero.
*           Unchanged on exit.
*
*  N      - INTEGER.
*           On entry, N specifies the number of columns of the matrix C.
*           N  must be at least zero.
*           Unchanged on exit.
*
*  ALPHA  - REAL            .
*           On entry, ALPHA specifies the scalar alpha.
*           Unchanged on exit.
*
*  A      - REAL             array of DIMENSION ( LDA, ka ), where ka is
*           m  when  SIDE = 'L' or 'l'  and is  n otherwise.
*           Before entry  with  SIDE = 'L' or 'l',  the  m by m  part of
*           the array  A  must contain the  symmetric matrix,  such that
*           when  UPLO = 'U' or 'u', the leading m by m upper triangular
*           part of the array  A  must contain the upper triangular part
*           of the  symmetric matrix and the  strictly  lower triangular
*           part of  A  is not referenced,  and when  UPLO = 'L' or 'l',
*           the leading  m by m  lower triangular part  of the  array  A
*           must  contain  the  lower triangular part  of the  symmetric
*           matrix and the  strictly upper triangular part of  A  is not
*           referenced.
*           Before entry  with  SIDE = 'R' or 'r',  the  n by n  part of
*           the array  A  must contain the  symmetric matrix,  such that
*           when  UPLO = 'U' or 'u', the leading n by n upper triangular
*           part of the array  A  must contain the upper triangular part
*           of the  symmetric matrix and the  strictly  lower triangular
*           part of  A  is not referenced,  and when  UPLO = 'L' or 'l',
*           the leading  n by n  lower triangular part  of the  array  A
*           must  contain  the  lower triangular part  of the  symmetric
*           matrix and the  strictly upper triangular part of  A  is not
*           referenced.
*           Unchanged on exit.
*
*  LDA    - INTEGER.
*           On entry, LDA specifies the first dimension of A as declared
*           in the calling (sub) program.  When  SIDE = 'L' or 'l'  then
*           LDA must be at least  max( 1, m ), otherwise  LDA must be at
*           least  max( 1, n ).
*           Unchanged on exit.
*
*  B      - REAL             array of DIMENSION ( LDB, n ).
*           Before entry, the leading  m by n part of the array  B  must
*           contain the matrix B.
*           Unchanged on exit.
*
*  LDB    - INTEGER.
*           On entry, LDB specifies the first dimension of B as declared
*           in  the  calling  (sub)  program.   LDB  must  be  at  least
*           max( 1, m ).
*           Unchanged on exit.
*
*  BETA   - REAL            .
*           On entry,  BETA  specifies the scalar  beta.  When  BETA  is
*           supplied as zero then C need not be set on input.
*           Unchanged on exit.
*
*  C      - REAL             array of DIMENSION ( LDC, n ).
*           Before entry, the leading  m by n  part of the array  C must
*           contain the matrix  C,  except when  beta  is zero, in which
*           case C need not be set on entry.
*           On exit, the array  C  is overwritten by the  m by n updated
*           matrix.
*
*  LDC    - INTEGER.
*           On entry, LDC specifies the first dimension of C as declared
*           in  the  calling  (sub)  program.   LDC  must  be  at  least
*           max( 1, m ).
*           Unchanged on exit.
*
*  Further Details
*  ===============
*
*  Level 3 Blas routine.
*
*  -- Written on 8-February-1989.
*     Jack Dongarra, Argonne National Laboratory.
*     Iain Duff, AERE Harwell.
*     Jeremy Du Croz, Numerical Algorithms Group Ltd.
*     Sven Hammarling, Numerical Algorithms Group Ltd.
*
*  =====================================================================
*
*     .. External Functions ..
      LOGICAL LSAME
      EXTERNAL LSAME
*     ..
*     .. External Subroutines ..
      EXTERNAL XERBLA
*     ..
*     .. Intrinsic Functions ..
      INTRINSIC MAX
*     ..
*     .. Local Scalars ..
      REAL TEMP1,TEMP2
      INTEGER I,INFO,J,K,NROWA
      LOGICAL UPPER
*     ..
*     .. Parameters ..
      REAL ONE,ZERO
      PARAMETER (ONE=1.0E+0,ZERO=0.0E+0)
*     ..
*
*     Set NROWA as the number of rows of A.
*
      IF (LSAME(SIDE,'L')) THEN
          NROWA = M
      ELSE
          NROWA = N
      END IF
      UPPER = LSAME(UPLO,'U')
*
*     Test the input parameters.
*
      INFO = 0
      IF ((.NOT.LSAME(SIDE,'L')) .AND. (.NOT.LSAME(SIDE,'R'))) THEN
          INFO = 1
      ELSE IF ((.NOT.UPPER) .AND. (.NOT.LSAME(UPLO,'L'))) THEN
          INFO = 2
      ELSE IF (M.LT.0THEN
          INFO = 3
      ELSE IF (N.LT.0THEN
          INFO = 4
      ELSE IF (LDA.LT.MAX(1,NROWA)) THEN
          INFO = 7
      ELSE IF (LDB.LT.MAX(1,M)) THEN
          INFO = 9
      ELSE IF (LDC.LT.MAX(1,M)) THEN
          INFO = 12
      END IF
      IF (INFO.NE.0THEN
          CALL XERBLA('SSYMM ',INFO)
          RETURN
      END IF
*
*     Quick return if possible.
*
      IF ((M.EQ.0.OR. (N.EQ.0.OR.
     +    ((ALPHA.EQ.ZERO).AND. (BETA.EQ.ONE))) RETURN
*
*     And when  alpha.eq.zero.
*
      IF (ALPHA.EQ.ZERO) THEN
          IF (BETA.EQ.ZERO) THEN
              DO 20 J = 1,N
                  DO 10 I = 1,M
                      C(I,J) = ZERO
   10             CONTINUE
   20         CONTINUE
          ELSE
              DO 40 J = 1,N
                  DO 30 I = 1,M
                      C(I,J) = BETA*C(I,J)
   30             CONTINUE
   40         CONTINUE
          END IF
          RETURN
      END IF
*
*     Start the operations.
*
      IF (LSAME(SIDE,'L')) THEN
*
*        Form  C := alpha*A*B + beta*C.
*
          IF (UPPER) THEN
              DO 70 J = 1,N
                  DO 60 I = 1,M
                      TEMP1 = ALPHA*B(I,J)
                      TEMP2 = ZERO
                      DO 50 K = 1,I - 1
                          C(K,J) = C(K,J) + TEMP1*A(K,I)
                          TEMP2 = TEMP2 + B(K,J)*A(K,I)
   50                 CONTINUE
                      IF (BETA.EQ.ZERO) THEN
                          C(I,J) = TEMP1*A(I,I) + ALPHA*TEMP2
                      ELSE
                          C(I,J) = BETA*C(I,J) + TEMP1*A(I,I) +
     +                             ALPHA*TEMP2
                      END IF
   60             CONTINUE
   70         CONTINUE
          ELSE
              DO 100 J = 1,N
                  DO 90 I = M,1,-1
                      TEMP1 = ALPHA*B(I,J)
                      TEMP2 = ZERO
                      DO 80 K = I + 1,M
                          C(K,J) = C(K,J) + TEMP1*A(K,I)
                          TEMP2 = TEMP2 + B(K,J)*A(K,I)
   80                 CONTINUE
                      IF (BETA.EQ.ZERO) THEN
                          C(I,J) = TEMP1*A(I,I) + ALPHA*TEMP2
                      ELSE
                          C(I,J) = BETA*C(I,J) + TEMP1*A(I,I) +
     +                             ALPHA*TEMP2
                      END IF
   90             CONTINUE
  100         CONTINUE
          END IF
      ELSE
*
*        Form  C := alpha*B*A + beta*C.
*
          DO 170 J = 1,N
              TEMP1 = ALPHA*A(J,J)
              IF (BETA.EQ.ZERO) THEN
                  DO 110 I = 1,M
                      C(I,J) = TEMP1*B(I,J)
  110             CONTINUE
              ELSE
                  DO 120 I = 1,M
                      C(I,J) = BETA*C(I,J) + TEMP1*B(I,J)
  120             CONTINUE
              END IF
              DO 140 K = 1,J - 1
                  IF (UPPER) THEN
                      TEMP1 = ALPHA*A(K,J)
                  ELSE
                      TEMP1 = ALPHA*A(J,K)
                  END IF
                  DO 130 I = 1,M
                      C(I,J) = C(I,J) + TEMP1*B(I,K)
  130             CONTINUE
  140         CONTINUE
              DO 160 K = J + 1,N
                  IF (UPPER) THEN
                      TEMP1 = ALPHA*A(J,K)
                  ELSE
                      TEMP1 = ALPHA*A(K,J)
                  END IF
                  DO 150 I = 1,M
                      C(I,J) = C(I,J) + TEMP1*B(I,K)
  150             CONTINUE
  160         CONTINUE
  170     CONTINUE
      END IF
*
      RETURN
*
*     End of SSYMM .
*
      END