1
       2
       3
       4
       5
       6
       7
       8
       9
      10
      11
      12
      13
      14
      15
      16
      17
      18
      19
      20
      21
      22
      23
      24
      25
      26
      27
      28
      29
      30
      31
      32
      33
      34
      35
      36
      37
      38
      39
      40
      41
      42
      43
      44
      45
      46
      47
      48
      49
      50
      51
      52
      53
      54
      55
      56
      57
      58
      59
      60
      61
      62
      63
      64
      65
      66
      67
      68
      69
      70
      71
      72
      73
      74
      75
      76
      77
      78
      79
      80
      81
      82
      83
      84
      85
      86
      87
      88
      89
      90
      91
      92
      93
      94
      95
      96
      97
      98
      99
     100
     101
     102
     103
     104
     105
     106
     107
     108
     109
     110
     111
     112
     113
     114
     115
     116
     117
     118
     119
     120
     121
     122
     123
     124
     125
     126
     127
     128
     129
     130
     131
     132
     133
     134
     135
     136
     137
     138
     139
     140
     141
     142
     143
     144
     145
     146
     147
     148
     149
     150
     151
     152
     153
     154
     155
     156
     157
     158
     159
     160
     161
     162
     163
     164
     165
     166
     167
     168
     169
     170
     171
     172
     173
     174
     175
     176
     177
     178
     179
     180
     181
     182
     183
     184
     185
     186
     187
     188
     189
     190
     191
     192
     193
     194
     195
     196
     197
     198
     199
     200
     201
     202
     203
     204
     205
     206
     207
     208
     209
     210
     211
     212
     213
     214
     215
     216
     217
     218
     219
     220
     221
     222
     223
     224
     225
     226
     227
     228
     229
     230
     231
     232
     233
     234
     235
     236
     237
     238
     239
     240
     241
     242
     243
     244
     245
     246
     247
     248
     249
     250
     251
     252
     253
     254
     255
     256
     257
     258
     259
     260
     261
     262
     263
     264
     265
     266
     267
     268
     269
     270
     271
     272
     273
     274
     275
     276
     277
     278
     279
     280
     281
     282
     283
     284
     285
     286
     287
     288
     289
     290
     291
     292
     293
     294
     295
     296
     297
     298
     299
     300
     301
     302
     303
     304
     305
     306
     307
     308
     309
     310
     311
     312
     313
     314
     315
     316
     317
     318
     319
     320
     321
     322
     323
     324
     325
     326
     327
     328
     329
      SUBROUTINE SSYR2K(UPLO,TRANS,N,K,ALPHA,A,LDA,B,LDB,BETA,C,LDC)
*     .. Scalar Arguments ..
      REAL ALPHA,BETA
      INTEGER K,LDA,LDB,LDC,N
      CHARACTER TRANS,UPLO
*     ..
*     .. Array Arguments ..
      REAL A(LDA,*),B(LDB,*),C(LDC,*)
*     ..
*
*  Purpose
*  =======
*
*  SSYR2K  performs one of the symmetric rank 2k operations
*
*     C := alpha*A*B**T + alpha*B*A**T + beta*C,
*
*  or
*
*     C := alpha*A**T*B + alpha*B**T*A + beta*C,
*
*  where  alpha and beta  are scalars, C is an  n by n  symmetric matrix
*  and  A and B  are  n by k  matrices  in the  first  case  and  k by n
*  matrices in the second case.
*
*  Arguments
*  ==========
*
*  UPLO   - CHARACTER*1.
*           On  entry,   UPLO  specifies  whether  the  upper  or  lower
*           triangular  part  of the  array  C  is to be  referenced  as
*           follows:
*
*              UPLO = 'U' or 'u'   Only the  upper triangular part of  C
*                                  is to be referenced.
*
*              UPLO = 'L' or 'l'   Only the  lower triangular part of  C
*                                  is to be referenced.
*
*           Unchanged on exit.
*
*  TRANS  - CHARACTER*1.
*           On entry,  TRANS  specifies the operation to be performed as
*           follows:
*
*              TRANS = 'N' or 'n'   C := alpha*A*B**T + alpha*B*A**T +
*                                        beta*C.
*
*              TRANS = 'T' or 't'   C := alpha*A**T*B + alpha*B**T*A +
*                                        beta*C.
*
*              TRANS = 'C' or 'c'   C := alpha*A**T*B + alpha*B**T*A +
*                                        beta*C.
*
*           Unchanged on exit.
*
*  N      - INTEGER.
*           On entry,  N specifies the order of the matrix C.  N must be
*           at least zero.
*           Unchanged on exit.
*
*  K      - INTEGER.
*           On entry with  TRANS = 'N' or 'n',  K  specifies  the number
*           of  columns  of the  matrices  A and B,  and on  entry  with
*           TRANS = 'T' or 't' or 'C' or 'c',  K  specifies  the  number
*           of rows of the matrices  A and B.  K must be at least  zero.
*           Unchanged on exit.
*
*  ALPHA  - REAL            .
*           On entry, ALPHA specifies the scalar alpha.
*           Unchanged on exit.
*
*  A      - REAL             array of DIMENSION ( LDA, ka ), where ka is
*           k  when  TRANS = 'N' or 'n',  and is  n  otherwise.
*           Before entry with  TRANS = 'N' or 'n',  the  leading  n by k
*           part of the array  A  must contain the matrix  A,  otherwise
*           the leading  k by n  part of the array  A  must contain  the
*           matrix A.
*           Unchanged on exit.
*
*  LDA    - INTEGER.
*           On entry, LDA specifies the first dimension of A as declared
*           in  the  calling  (sub)  program.   When  TRANS = 'N' or 'n'
*           then  LDA must be at least  max( 1, n ), otherwise  LDA must
*           be at least  max( 1, k ).
*           Unchanged on exit.
*
*  B      - REAL             array of DIMENSION ( LDB, kb ), where kb is
*           k  when  TRANS = 'N' or 'n',  and is  n  otherwise.
*           Before entry with  TRANS = 'N' or 'n',  the  leading  n by k
*           part of the array  B  must contain the matrix  B,  otherwise
*           the leading  k by n  part of the array  B  must contain  the
*           matrix B.
*           Unchanged on exit.
*
*  LDB    - INTEGER.
*           On entry, LDB specifies the first dimension of B as declared
*           in  the  calling  (sub)  program.   When  TRANS = 'N' or 'n'
*           then  LDB must be at least  max( 1, n ), otherwise  LDB must
*           be at least  max( 1, k ).
*           Unchanged on exit.
*
*  BETA   - REAL            .
*           On entry, BETA specifies the scalar beta.
*           Unchanged on exit.
*
*  C      - REAL             array of DIMENSION ( LDC, n ).
*           Before entry  with  UPLO = 'U' or 'u',  the leading  n by n
*           upper triangular part of the array C must contain the upper
*           triangular part  of the  symmetric matrix  and the strictly
*           lower triangular part of C is not referenced.  On exit, the
*           upper triangular part of the array  C is overwritten by the
*           upper triangular part of the updated matrix.
*           Before entry  with  UPLO = 'L' or 'l',  the leading  n by n
*           lower triangular part of the array C must contain the lower
*           triangular part  of the  symmetric matrix  and the strictly
*           upper triangular part of C is not referenced.  On exit, the
*           lower triangular part of the array  C is overwritten by the
*           lower triangular part of the updated matrix.
*
*  LDC    - INTEGER.
*           On entry, LDC specifies the first dimension of C as declared
*           in  the  calling  (sub)  program.   LDC  must  be  at  least
*           max( 1, n ).
*           Unchanged on exit.
*
*  Further Details
*  ===============
*
*  Level 3 Blas routine.
*
*
*  -- Written on 8-February-1989.
*     Jack Dongarra, Argonne National Laboratory.
*     Iain Duff, AERE Harwell.
*     Jeremy Du Croz, Numerical Algorithms Group Ltd.
*     Sven Hammarling, Numerical Algorithms Group Ltd.
*
*  =====================================================================
*
*     .. External Functions ..
      LOGICAL LSAME
      EXTERNAL LSAME
*     ..
*     .. External Subroutines ..
      EXTERNAL XERBLA
*     ..
*     .. Intrinsic Functions ..
      INTRINSIC MAX
*     ..
*     .. Local Scalars ..
      REAL TEMP1,TEMP2
      INTEGER I,INFO,J,L,NROWA
      LOGICAL UPPER
*     ..
*     .. Parameters ..
      REAL ONE,ZERO
      PARAMETER (ONE=1.0E+0,ZERO=0.0E+0)
*     ..
*
*     Test the input parameters.
*
      IF (LSAME(TRANS,'N')) THEN
          NROWA = N
      ELSE
          NROWA = K
      END IF
      UPPER = LSAME(UPLO,'U')
*
      INFO = 0
      IF ((.NOT.UPPER) .AND. (.NOT.LSAME(UPLO,'L'))) THEN
          INFO = 1
      ELSE IF ((.NOT.LSAME(TRANS,'N')) .AND.
     +         (.NOT.LSAME(TRANS,'T')) .AND.
     +         (.NOT.LSAME(TRANS,'C'))) THEN
          INFO = 2
      ELSE IF (N.LT.0THEN
          INFO = 3
      ELSE IF (K.LT.0THEN
          INFO = 4
      ELSE IF (LDA.LT.MAX(1,NROWA)) THEN
          INFO = 7
      ELSE IF (LDB.LT.MAX(1,NROWA)) THEN
          INFO = 9
      ELSE IF (LDC.LT.MAX(1,N)) THEN
          INFO = 12
      END IF
      IF (INFO.NE.0THEN
          CALL XERBLA('SSYR2K',INFO)
          RETURN
      END IF
*
*     Quick return if possible.
*
      IF ((N.EQ.0.OR. (((ALPHA.EQ.ZERO).OR.
     +    (K.EQ.0)).AND. (BETA.EQ.ONE))) RETURN
*
*     And when  alpha.eq.zero.
*
      IF (ALPHA.EQ.ZERO) THEN
          IF (UPPER) THEN
              IF (BETA.EQ.ZERO) THEN
                  DO 20 J = 1,N
                      DO 10 I = 1,J
                          C(I,J) = ZERO
   10                 CONTINUE
   20             CONTINUE
              ELSE
                  DO 40 J = 1,N
                      DO 30 I = 1,J
                          C(I,J) = BETA*C(I,J)
   30                 CONTINUE
   40             CONTINUE
              END IF
          ELSE
              IF (BETA.EQ.ZERO) THEN
                  DO 60 J = 1,N
                      DO 50 I = J,N
                          C(I,J) = ZERO
   50                 CONTINUE
   60             CONTINUE
              ELSE
                  DO 80 J = 1,N
                      DO 70 I = J,N
                          C(I,J) = BETA*C(I,J)
   70                 CONTINUE
   80             CONTINUE
              END IF
          END IF
          RETURN
      END IF
*
*     Start the operations.
*
      IF (LSAME(TRANS,'N')) THEN
*
*        Form  C := alpha*A*B**T + alpha*B*A**T + C.
*
          IF (UPPER) THEN
              DO 130 J = 1,N
                  IF (BETA.EQ.ZERO) THEN
                      DO 90 I = 1,J
                          C(I,J) = ZERO
   90                 CONTINUE
                  ELSE IF (BETA.NE.ONE) THEN
                      DO 100 I = 1,J
                          C(I,J) = BETA*C(I,J)
  100                 CONTINUE
                  END IF
                  DO 120 L = 1,K
                      IF ((A(J,L).NE.ZERO) .OR. (B(J,L).NE.ZERO)) THEN
                          TEMP1 = ALPHA*B(J,L)
                          TEMP2 = ALPHA*A(J,L)
                          DO 110 I = 1,J
                              C(I,J) = C(I,J) + A(I,L)*TEMP1 +
     +                                 B(I,L)*TEMP2
  110                     CONTINUE
                      END IF
  120             CONTINUE
  130         CONTINUE
          ELSE
              DO 180 J = 1,N
                  IF (BETA.EQ.ZERO) THEN
                      DO 140 I = J,N
                          C(I,J) = ZERO
  140                 CONTINUE
                  ELSE IF (BETA.NE.ONE) THEN
                      DO 150 I = J,N
                          C(I,J) = BETA*C(I,J)
  150                 CONTINUE
                  END IF
                  DO 170 L = 1,K
                      IF ((A(J,L).NE.ZERO) .OR. (B(J,L).NE.ZERO)) THEN
                          TEMP1 = ALPHA*B(J,L)
                          TEMP2 = ALPHA*A(J,L)
                          DO 160 I = J,N
                              C(I,J) = C(I,J) + A(I,L)*TEMP1 +
     +                                 B(I,L)*TEMP2
  160                     CONTINUE
                      END IF
  170             CONTINUE
  180         CONTINUE
          END IF
      ELSE
*
*        Form  C := alpha*A**T*B + alpha*B**T*A + C.
*
          IF (UPPER) THEN
              DO 210 J = 1,N
                  DO 200 I = 1,J
                      TEMP1 = ZERO
                      TEMP2 = ZERO
                      DO 190 L = 1,K
                          TEMP1 = TEMP1 + A(L,I)*B(L,J)
                          TEMP2 = TEMP2 + B(L,I)*A(L,J)
  190                 CONTINUE
                      IF (BETA.EQ.ZERO) THEN
                          C(I,J) = ALPHA*TEMP1 + ALPHA*TEMP2
                      ELSE
                          C(I,J) = BETA*C(I,J) + ALPHA*TEMP1 +
     +                             ALPHA*TEMP2
                      END IF
  200             CONTINUE
  210         CONTINUE
          ELSE
              DO 240 J = 1,N
                  DO 230 I = J,N
                      TEMP1 = ZERO
                      TEMP2 = ZERO
                      DO 220 L = 1,K
                          TEMP1 = TEMP1 + A(L,I)*B(L,J)
                          TEMP2 = TEMP2 + B(L,I)*A(L,J)
  220                 CONTINUE
                      IF (BETA.EQ.ZERO) THEN
                          C(I,J) = ALPHA*TEMP1 + ALPHA*TEMP2
                      ELSE
                          C(I,J) = BETA*C(I,J) + ALPHA*TEMP1 +
     +                             ALPHA*TEMP2
                      END IF
  230             CONTINUE
  240         CONTINUE
          END IF
      END IF
*
      RETURN
*
*     End of SSYR2K.
*
      END