1
       2
       3
       4
       5
       6
       7
       8
       9
      10
      11
      12
      13
      14
      15
      16
      17
      18
      19
      20
      21
      22
      23
      24
      25
      26
      27
      28
      29
      30
      31
      32
      33
      34
      35
      36
      37
      38
      39
      40
      41
      42
      43
      44
      45
      46
      47
      48
      49
      50
      51
      52
      53
      54
      55
      56
      57
      58
      59
      60
      61
      62
      63
      64
      65
      66
      67
      68
      69
      70
      71
      72
      73
      74
      75
      76
      77
      78
      79
      80
      81
      82
      83
      84
      85
      86
      87
      88
      89
      90
      91
      92
      93
      94
      95
      96
      97
      98
      99
     100
     101
     102
     103
     104
     105
     106
     107
     108
     109
     110
     111
     112
     113
     114
     115
     116
     117
     118
     119
     120
     121
     122
     123
     124
     125
     126
     127
     128
     129
     130
     131
     132
     133
     134
     135
     136
     137
     138
     139
     140
     141
     142
     143
     144
     145
     146
     147
     148
     149
     150
     151
     152
     153
     154
     155
     156
     157
     158
     159
     160
     161
     162
     163
     164
     165
     166
     167
     168
     169
     170
     171
     172
     173
     174
     175
     176
     177
     178
     179
     180
     181
     182
     183
     184
     185
     186
     187
     188
     189
     190
     191
     192
     193
     194
     195
     196
     197
     198
     199
     200
     201
     202
     203
     204
     205
     206
     207
     208
     209
     210
     211
     212
     213
     214
     215
     216
     217
      SUBROUTINE ZHER(UPLO,N,ALPHA,X,INCX,A,LDA)
*     .. Scalar Arguments ..
      DOUBLE PRECISION ALPHA
      INTEGER INCX,LDA,N
      CHARACTER UPLO
*     ..
*     .. Array Arguments ..
      DOUBLE COMPLEX A(LDA,*),X(*)
*     ..
*
*  Purpose
*  =======
*
*  ZHER   performs the hermitian rank 1 operation
*
*     A := alpha*x*x**H + A,
*
*  where alpha is a real scalar, x is an n element vector and A is an
*  n by n hermitian matrix.
*
*  Arguments
*  ==========
*
*  UPLO   - CHARACTER*1.
*           On entry, UPLO specifies whether the upper or lower
*           triangular part of the array A is to be referenced as
*           follows:
*
*              UPLO = 'U' or 'u'   Only the upper triangular part of A
*                                  is to be referenced.
*
*              UPLO = 'L' or 'l'   Only the lower triangular part of A
*                                  is to be referenced.
*
*           Unchanged on exit.
*
*  N      - INTEGER.
*           On entry, N specifies the order of the matrix A.
*           N must be at least zero.
*           Unchanged on exit.
*
*  ALPHA  - DOUBLE PRECISION.
*           On entry, ALPHA specifies the scalar alpha.
*           Unchanged on exit.
*
*  X      - COMPLEX*16       array of dimension at least
*           ( 1 + ( n - 1 )*abs( INCX ) ).
*           Before entry, the incremented array X must contain the n
*           element vector x.
*           Unchanged on exit.
*
*  INCX   - INTEGER.
*           On entry, INCX specifies the increment for the elements of
*           X. INCX must not be zero.
*           Unchanged on exit.
*
*  A      - COMPLEX*16       array of DIMENSION ( LDA, n ).
*           Before entry with  UPLO = 'U' or 'u', the leading n by n
*           upper triangular part of the array A must contain the upper
*           triangular part of the hermitian matrix and the strictly
*           lower triangular part of A is not referenced. On exit, the
*           upper triangular part of the array A is overwritten by the
*           upper triangular part of the updated matrix.
*           Before entry with UPLO = 'L' or 'l', the leading n by n
*           lower triangular part of the array A must contain the lower
*           triangular part of the hermitian matrix and the strictly
*           upper triangular part of A is not referenced. On exit, the
*           lower triangular part of the array A is overwritten by the
*           lower triangular part of the updated matrix.
*           Note that the imaginary parts of the diagonal elements need
*           not be set, they are assumed to be zero, and on exit they
*           are set to zero.
*
*  LDA    - INTEGER.
*           On entry, LDA specifies the first dimension of A as declared
*           in the calling (sub) program. LDA must be at least
*           max( 1, n ).
*           Unchanged on exit.
*
*  Further Details
*  ===============
*
*  Level 2 Blas routine.
*
*  -- Written on 22-October-1986.
*     Jack Dongarra, Argonne National Lab.
*     Jeremy Du Croz, Nag Central Office.
*     Sven Hammarling, Nag Central Office.
*     Richard Hanson, Sandia National Labs.
*
*  =====================================================================
*
*     .. Parameters ..
      DOUBLE COMPLEX ZERO
      PARAMETER (ZERO= (0.0D+0,0.0D+0))
*     ..
*     .. Local Scalars ..
      DOUBLE COMPLEX TEMP
      INTEGER I,INFO,IX,J,JX,KX
*     ..
*     .. External Functions ..
      LOGICAL LSAME
      EXTERNAL LSAME
*     ..
*     .. External Subroutines ..
      EXTERNAL XERBLA
*     ..
*     .. Intrinsic Functions ..
      INTRINSIC DBLE,DCONJG,MAX
*     ..
*
*     Test the input parameters.
*
      INFO = 0
      IF (.NOT.LSAME(UPLO,'U'.AND. .NOT.LSAME(UPLO,'L')) THEN
          INFO = 1
      ELSE IF (N.LT.0THEN
          INFO = 2
      ELSE IF (INCX.EQ.0THEN
          INFO = 5
      ELSE IF (LDA.LT.MAX(1,N)) THEN
          INFO = 7
      END IF
      IF (INFO.NE.0THEN
          CALL XERBLA('ZHER  ',INFO)
          RETURN
      END IF
*
*     Quick return if possible.
*
      IF ((N.EQ.0.OR. (ALPHA.EQ.DBLE(ZERO))) RETURN
*
*     Set the start point in X if the increment is not unity.
*
      IF (INCX.LE.0THEN
          KX = 1 - (N-1)*INCX
      ELSE IF (INCX.NE.1THEN
          KX = 1
      END IF
*
*     Start the operations. In this version the elements of A are
*     accessed sequentially with one pass through the triangular part
*     of A.
*
      IF (LSAME(UPLO,'U')) THEN
*
*        Form  A  when A is stored in upper triangle.
*
          IF (INCX.EQ.1THEN
              DO 20 J = 1,N
                  IF (X(J).NE.ZERO) THEN
                      TEMP = ALPHA*DCONJG(X(J))
                      DO 10 I = 1,J - 1
                          A(I,J) = A(I,J) + X(I)*TEMP
   10                 CONTINUE
                      A(J,J) = DBLE(A(J,J)) + DBLE(X(J)*TEMP)
                  ELSE
                      A(J,J) = DBLE(A(J,J))
                  END IF
   20         CONTINUE
          ELSE
              JX = KX
              DO 40 J = 1,N
                  IF (X(JX).NE.ZERO) THEN
                      TEMP = ALPHA*DCONJG(X(JX))
                      IX = KX
                      DO 30 I = 1,J - 1
                          A(I,J) = A(I,J) + X(IX)*TEMP
                          IX = IX + INCX
   30                 CONTINUE
                      A(J,J) = DBLE(A(J,J)) + DBLE(X(JX)*TEMP)
                  ELSE
                      A(J,J) = DBLE(A(J,J))
                  END IF
                  JX = JX + INCX
   40         CONTINUE
          END IF
      ELSE
*
*        Form  A  when A is stored in lower triangle.
*
          IF (INCX.EQ.1THEN
              DO 60 J = 1,N
                  IF (X(J).NE.ZERO) THEN
                      TEMP = ALPHA*DCONJG(X(J))
                      A(J,J) = DBLE(A(J,J)) + DBLE(TEMP*X(J))
                      DO 50 I = J + 1,N
                          A(I,J) = A(I,J) + X(I)*TEMP
   50                 CONTINUE
                  ELSE
                      A(J,J) = DBLE(A(J,J))
                  END IF
   60         CONTINUE
          ELSE
              JX = KX
              DO 80 J = 1,N
                  IF (X(JX).NE.ZERO) THEN
                      TEMP = ALPHA*DCONJG(X(JX))
                      A(J,J) = DBLE(A(J,J)) + DBLE(TEMP*X(JX))
                      IX = JX
                      DO 70 I = J + 1,N
                          IX = IX + INCX
                          A(I,J) = A(I,J) + X(IX)*TEMP
   70                 CONTINUE
                  ELSE
                      A(J,J) = DBLE(A(J,J))
                  END IF
                  JX = JX + INCX
   80         CONTINUE
          END IF
      END IF
*
      RETURN
*
*     End of ZHER  .
*
      END