1
       2
       3
       4
       5
       6
       7
       8
       9
      10
      11
      12
      13
      14
      15
      16
      17
      18
      19
      20
      21
      22
      23
      24
      25
      26
      27
      28
      29
      30
      31
      32
      33
      34
      35
      36
      37
      38
      39
      40
      41
      42
      43
      44
      45
      46
      47
      48
      49
      50
      51
      52
      53
      54
      55
      56
      57
      58
      59
      60
      61
      62
      63
      64
      65
      66
      67
      68
      69
      70
      71
      72
      73
      74
      75
      76
      77
      78
      79
      80
      81
      82
      83
      84
      85
      86
      87
      88
      89
      90
      91
      92
      93
      94
      95
      96
      97
      98
      99
     100
     101
     102
     103
     104
     105
     106
     107
     108
     109
     110
     111
     112
     113
     114
     115
     116
     117
     118
     119
     120
     121
     122
     123
     124
     125
     126
     127
     128
     129
     130
     131
     132
     133
     134
     135
     136
     137
     138
     139
     140
     141
     142
     143
     144
     145
     146
     147
     148
     149
     150
     151
     152
     153
     154
     155
     156
     157
     158
     159
     160
     161
     162
     163
     164
     165
     166
     167
     168
     169
     170
     171
     172
     173
     174
     175
     176
     177
     178
     179
     180
     181
     182
     183
     184
     185
     186
     187
     188
     189
     190
     191
     192
     193
     194
     195
     196
     197
     198
     199
     200
     201
     202
     203
     204
     205
     206
     207
     208
     209
     210
     211
     212
     213
     214
     215
     216
     217
     218
     219
     220
     221
     222
     223
     224
     225
     226
     227
     228
     229
     230
     231
     232
     233
     234
     235
     236
     237
     238
     239
     240
     241
     242
     243
     244
     245
     246
     247
     248
     249
     250
     251
     252
     253
     254
     255
     256
     257
     258
     259
     260
     261
     262
     263
     264
     265
     266
     267
     268
     269
     270
     271
     272
     273
     274
     275
     276
     277
     278
     279
     280
     281
     282
     283
     284
     285
     286
     287
     288
     289
     290
     291
     292
     293
     294
     295
     296
     297
     298
     299
     300
     301
     302
     303
     304
     305
     306
     307
     308
     309
     310
     311
     312
     313
     314
     315
     316
     317
     318
     319
     320
     321
     322
     323
     324
     325
     326
     327
     328
     329
     330
     331
     332
     333
     334
     335
     336
     337
     338
     339
     340
     341
     342
     343
     344
     345
     346
     347
     348
     349
     350
     351
     352
     353
     354
     355
     356
     357
     358
     359
     360
     361
     362
     363
     364
     365
     366
     367
     368
     369
     370
     371
     372
     373
     374
     375
     376
     377
     378
     379
     380
     381
     382
     383
     384
     385
     386
     387
     388
     389
     390
     391
     392
     393
     394
     395
     396
     397
     398
     399
     400
     401
     402
     403
     404
     405
     406
     407
     408
     409
     410
      SUBROUTINE ZTRSM(SIDE,UPLO,TRANSA,DIAG,M,N,ALPHA,A,LDA,B,LDB)
*     .. Scalar Arguments ..
      DOUBLE COMPLEX ALPHA
      INTEGER LDA,LDB,M,N
      CHARACTER DIAG,SIDE,TRANSA,UPLO
*     ..
*     .. Array Arguments ..
      DOUBLE COMPLEX A(LDA,*),B(LDB,*)
*     ..
*
*  Purpose
*  =======
*
*  ZTRSM  solves one of the matrix equations
*
*     op( A )*X = alpha*B,   or   X*op( A ) = alpha*B,
*
*  where alpha is a scalar, X and B are m by n matrices, A is a unit, or
*  non-unit,  upper or lower triangular matrix  and  op( A )  is one  of
*
*     op( A ) = A   or   op( A ) = A**T   or   op( A ) = A**H.
*
*  The matrix X is overwritten on B.
*
*  Arguments
*  ==========
*
*  SIDE   - CHARACTER*1.
*           On entry, SIDE specifies whether op( A ) appears on the left
*           or right of X as follows:
*
*              SIDE = 'L' or 'l'   op( A )*X = alpha*B.
*
*              SIDE = 'R' or 'r'   X*op( A ) = alpha*B.
*
*           Unchanged on exit.
*
*  UPLO   - CHARACTER*1.
*           On entry, UPLO specifies whether the matrix A is an upper or
*           lower triangular matrix as follows:
*
*              UPLO = 'U' or 'u'   A is an upper triangular matrix.
*
*              UPLO = 'L' or 'l'   A is a lower triangular matrix.
*
*           Unchanged on exit.
*
*  TRANSA - CHARACTER*1.
*           On entry, TRANSA specifies the form of op( A ) to be used in
*           the matrix multiplication as follows:
*
*              TRANSA = 'N' or 'n'   op( A ) = A.
*
*              TRANSA = 'T' or 't'   op( A ) = A**T.
*
*              TRANSA = 'C' or 'c'   op( A ) = A**H.
*
*           Unchanged on exit.
*
*  DIAG   - CHARACTER*1.
*           On entry, DIAG specifies whether or not A is unit triangular
*           as follows:
*
*              DIAG = 'U' or 'u'   A is assumed to be unit triangular.
*
*              DIAG = 'N' or 'n'   A is not assumed to be unit
*                                  triangular.
*
*           Unchanged on exit.
*
*  M      - INTEGER.
*           On entry, M specifies the number of rows of B. M must be at
*           least zero.
*           Unchanged on exit.
*
*  N      - INTEGER.
*           On entry, N specifies the number of columns of B.  N must be
*           at least zero.
*           Unchanged on exit.
*
*  ALPHA  - COMPLEX*16      .
*           On entry,  ALPHA specifies the scalar  alpha. When  alpha is
*           zero then  A is not referenced and  B need not be set before
*           entry.
*           Unchanged on exit.
*
*  A      - COMPLEX*16       array of DIMENSION ( LDA, k ), where k is m
*           when  SIDE = 'L' or 'l'  and is  n  when  SIDE = 'R' or 'r'.
*           Before entry  with  UPLO = 'U' or 'u',  the  leading  k by k
*           upper triangular part of the array  A must contain the upper
*           triangular matrix  and the strictly lower triangular part of
*           A is not referenced.
*           Before entry  with  UPLO = 'L' or 'l',  the  leading  k by k
*           lower triangular part of the array  A must contain the lower
*           triangular matrix  and the strictly upper triangular part of
*           A is not referenced.
*           Note that when  DIAG = 'U' or 'u',  the diagonal elements of
*           A  are not referenced either,  but are assumed to be  unity.
*           Unchanged on exit.
*
*  LDA    - INTEGER.
*           On entry, LDA specifies the first dimension of A as declared
*           in the calling (sub) program.  When  SIDE = 'L' or 'l'  then
*           LDA  must be at least  max( 1, m ),  when  SIDE = 'R' or 'r'
*           then LDA must be at least max( 1, n ).
*           Unchanged on exit.
*
*  B      - COMPLEX*16       array of DIMENSION ( LDB, n ).
*           Before entry,  the leading  m by n part of the array  B must
*           contain  the  right-hand  side  matrix  B,  and  on exit  is
*           overwritten by the solution matrix  X.
*
*  LDB    - INTEGER.
*           On entry, LDB specifies the first dimension of B as declared
*           in  the  calling  (sub)  program.   LDB  must  be  at  least
*           max( 1, m ).
*           Unchanged on exit.
*
*  Further Details
*  ===============
*
*  Level 3 Blas routine.
*
*  -- Written on 8-February-1989.
*     Jack Dongarra, Argonne National Laboratory.
*     Iain Duff, AERE Harwell.
*     Jeremy Du Croz, Numerical Algorithms Group Ltd.
*     Sven Hammarling, Numerical Algorithms Group Ltd.
*
*  =====================================================================
*
*     .. External Functions ..
      LOGICAL LSAME
      EXTERNAL LSAME
*     ..
*     .. External Subroutines ..
      EXTERNAL XERBLA
*     ..
*     .. Intrinsic Functions ..
      INTRINSIC DCONJG,MAX
*     ..
*     .. Local Scalars ..
      DOUBLE COMPLEX TEMP
      INTEGER I,INFO,J,K,NROWA
      LOGICAL LSIDE,NOCONJ,NOUNIT,UPPER
*     ..
*     .. Parameters ..
      DOUBLE COMPLEX ONE
      PARAMETER (ONE= (1.0D+0,0.0D+0))
      DOUBLE COMPLEX ZERO
      PARAMETER (ZERO= (0.0D+0,0.0D+0))
*     ..
*
*     Test the input parameters.
*
      LSIDE = LSAME(SIDE,'L')
      IF (LSIDE) THEN
          NROWA = M
      ELSE
          NROWA = N
      END IF
      NOCONJ = LSAME(TRANSA,'T')
      NOUNIT = LSAME(DIAG,'N')
      UPPER = LSAME(UPLO,'U')
*
      INFO = 0
      IF ((.NOT.LSIDE) .AND. (.NOT.LSAME(SIDE,'R'))) THEN
          INFO = 1
      ELSE IF ((.NOT.UPPER) .AND. (.NOT.LSAME(UPLO,'L'))) THEN
          INFO = 2
      ELSE IF ((.NOT.LSAME(TRANSA,'N')) .AND.
     +         (.NOT.LSAME(TRANSA,'T')) .AND.
     +         (.NOT.LSAME(TRANSA,'C'))) THEN
          INFO = 3
      ELSE IF ((.NOT.LSAME(DIAG,'U')) .AND. (.NOT.LSAME(DIAG,'N'))) THEN
          INFO = 4
      ELSE IF (M.LT.0THEN
          INFO = 5
      ELSE IF (N.LT.0THEN
          INFO = 6
      ELSE IF (LDA.LT.MAX(1,NROWA)) THEN
          INFO = 9
      ELSE IF (LDB.LT.MAX(1,M)) THEN
          INFO = 11
      END IF
      IF (INFO.NE.0THEN
          CALL XERBLA('ZTRSM ',INFO)
          RETURN
      END IF
*
*     Quick return if possible.
*
      IF (M.EQ.0 .OR. N.EQ.0RETURN
*
*     And when  alpha.eq.zero.
*
      IF (ALPHA.EQ.ZERO) THEN
          DO 20 J = 1,N
              DO 10 I = 1,M
                  B(I,J) = ZERO
   10         CONTINUE
   20     CONTINUE
          RETURN
      END IF
*
*     Start the operations.
*
      IF (LSIDE) THEN
          IF (LSAME(TRANSA,'N')) THEN
*
*           Form  B := alpha*inv( A )*B.
*
              IF (UPPER) THEN
                  DO 60 J = 1,N
                      IF (ALPHA.NE.ONE) THEN
                          DO 30 I = 1,M
                              B(I,J) = ALPHA*B(I,J)
   30                     CONTINUE
                      END IF
                      DO 50 K = M,1,-1
                          IF (B(K,J).NE.ZERO) THEN
                              IF (NOUNIT) B(K,J) = B(K,J)/A(K,K)
                              DO 40 I = 1,K - 1
                                  B(I,J) = B(I,J) - B(K,J)*A(I,K)
   40                         CONTINUE
                          END IF
   50                 CONTINUE
   60             CONTINUE
              ELSE
                  DO 100 J = 1,N
                      IF (ALPHA.NE.ONE) THEN
                          DO 70 I = 1,M
                              B(I,J) = ALPHA*B(I,J)
   70                     CONTINUE
                      END IF
                      DO 90 K = 1,M
                          IF (B(K,J).NE.ZERO) THEN
                              IF (NOUNIT) B(K,J) = B(K,J)/A(K,K)
                              DO 80 I = K + 1,M
                                  B(I,J) = B(I,J) - B(K,J)*A(I,K)
   80                         CONTINUE
                          END IF
   90                 CONTINUE
  100             CONTINUE
              END IF
          ELSE
*
*           Form  B := alpha*inv( A**T )*B
*           or    B := alpha*inv( A**H )*B.
*
              IF (UPPER) THEN
                  DO 140 J = 1,N
                      DO 130 I = 1,M
                          TEMP = ALPHA*B(I,J)
                          IF (NOCONJ) THEN
                              DO 110 K = 1,I - 1
                                  TEMP = TEMP - A(K,I)*B(K,J)
  110                         CONTINUE
                              IF (NOUNIT) TEMP = TEMP/A(I,I)
                          ELSE
                              DO 120 K = 1,I - 1
                                  TEMP = TEMP - DCONJG(A(K,I))*B(K,J)
  120                         CONTINUE
                              IF (NOUNIT) TEMP = TEMP/DCONJG(A(I,I))
                          END IF
                          B(I,J) = TEMP
  130                 CONTINUE
  140             CONTINUE
              ELSE
                  DO 180 J = 1,N
                      DO 170 I = M,1,-1
                          TEMP = ALPHA*B(I,J)
                          IF (NOCONJ) THEN
                              DO 150 K = I + 1,M
                                  TEMP = TEMP - A(K,I)*B(K,J)
  150                         CONTINUE
                              IF (NOUNIT) TEMP = TEMP/A(I,I)
                          ELSE
                              DO 160 K = I + 1,M
                                  TEMP = TEMP - DCONJG(A(K,I))*B(K,J)
  160                         CONTINUE
                              IF (NOUNIT) TEMP = TEMP/DCONJG(A(I,I))
                          END IF
                          B(I,J) = TEMP
  170                 CONTINUE
  180             CONTINUE
              END IF
          END IF
      ELSE
          IF (LSAME(TRANSA,'N')) THEN
*
*           Form  B := alpha*B*inv( A ).
*
              IF (UPPER) THEN
                  DO 230 J = 1,N
                      IF (ALPHA.NE.ONE) THEN
                          DO 190 I = 1,M
                              B(I,J) = ALPHA*B(I,J)
  190                     CONTINUE
                      END IF
                      DO 210 K = 1,J - 1
                          IF (A(K,J).NE.ZERO) THEN
                              DO 200 I = 1,M
                                  B(I,J) = B(I,J) - A(K,J)*B(I,K)
  200                         CONTINUE
                          END IF
  210                 CONTINUE
                      IF (NOUNIT) THEN
                          TEMP = ONE/A(J,J)
                          DO 220 I = 1,M
                              B(I,J) = TEMP*B(I,J)
  220                     CONTINUE
                      END IF
  230             CONTINUE
              ELSE
                  DO 280 J = N,1,-1
                      IF (ALPHA.NE.ONE) THEN
                          DO 240 I = 1,M
                              B(I,J) = ALPHA*B(I,J)
  240                     CONTINUE
                      END IF
                      DO 260 K = J + 1,N
                          IF (A(K,J).NE.ZERO) THEN
                              DO 250 I = 1,M
                                  B(I,J) = B(I,J) - A(K,J)*B(I,K)
  250                         CONTINUE
                          END IF
  260                 CONTINUE
                      IF (NOUNIT) THEN
                          TEMP = ONE/A(J,J)
                          DO 270 I = 1,M
                              B(I,J) = TEMP*B(I,J)
  270                     CONTINUE
                      END IF
  280             CONTINUE
              END IF
          ELSE
*
*           Form  B := alpha*B*inv( A**T )
*           or    B := alpha*B*inv( A**H ).
*
              IF (UPPER) THEN
                  DO 330 K = N,1,-1
                      IF (NOUNIT) THEN
                          IF (NOCONJ) THEN
                              TEMP = ONE/A(K,K)
                          ELSE
                              TEMP = ONE/DCONJG(A(K,K))
                          END IF
                          DO 290 I = 1,M
                              B(I,K) = TEMP*B(I,K)
  290                     CONTINUE
                      END IF
                      DO 310 J = 1,K - 1
                          IF (A(J,K).NE.ZERO) THEN
                              IF (NOCONJ) THEN
                                  TEMP = A(J,K)
                              ELSE
                                  TEMP = DCONJG(A(J,K))
                              END IF
                              DO 300 I = 1,M
                                  B(I,J) = B(I,J) - TEMP*B(I,K)
  300                         CONTINUE
                          END IF
  310                 CONTINUE
                      IF (ALPHA.NE.ONE) THEN
                          DO 320 I = 1,M
                              B(I,K) = ALPHA*B(I,K)
  320                     CONTINUE
                      END IF
  330             CONTINUE
              ELSE
                  DO 380 K = 1,N
                      IF (NOUNIT) THEN
                          IF (NOCONJ) THEN
                              TEMP = ONE/A(K,K)
                          ELSE
                              TEMP = ONE/DCONJG(A(K,K))
                          END IF
                          DO 340 I = 1,M
                              B(I,K) = TEMP*B(I,K)
  340                     CONTINUE
                      END IF
                      DO 360 J = K + 1,N
                          IF (A(J,K).NE.ZERO) THEN
                              IF (NOCONJ) THEN
                                  TEMP = A(J,K)
                              ELSE
                                  TEMP = DCONJG(A(J,K))
                              END IF
                              DO 350 I = 1,M
                                  B(I,J) = B(I,J) - TEMP*B(I,K)
  350                         CONTINUE
                          END IF
  360                 CONTINUE
                      IF (ALPHA.NE.ONE) THEN
                          DO 370 I = 1,M
                              B(I,K) = ALPHA*B(I,K)
  370                     CONTINUE
                      END IF
  380             CONTINUE
              END IF
          END IF
      END IF
*
      RETURN
*
*     End of ZTRSM .
*
      END