1
       2
       3
       4
       5
       6
       7
       8
       9
      10
      11
      12
      13
      14
      15
      16
      17
      18
      19
      20
      21
      22
      23
      24
      25
      26
      27
      28
      29
      30
      31
      32
      33
      34
      35
      36
      37
      38
      39
      40
      41
      42
      43
      44
      45
      46
      47
      48
      49
      50
      51
      52
      53
      54
      55
      56
      57
      58
      59
      60
      61
      62
      63
      64
      65
      66
      67
      68
      69
      70
      71
      72
      73
      74
      75
      76
      77
      78
      79
      80
      81
      82
      83
      84
      85
      86
      87
      88
      89
      90
      91
      92
      93
      94
      95
      96
      97
      98
      99
     100
     101
     102
     103
     104
     105
     106
     107
     108
     109
     110
     111
     112
     113
     114
     115
     116
     117
     118
     119
     120
     121
     122
     123
     124
     125
     126
     127
     128
     129
     130
     131
     132
     133
     134
     135
     136
     137
     138
     139
     140
     141
     142
     143
     144
     145
     146
     147
     148
     149
     150
     151
     152
     153
     154
     155
     156
     157
     158
     159
     160
     161
     162
     163
     164
     165
      SUBROUTINE CGETRF ( M, N, A, LDA, IPIV, INFO)
*
*  -- LAPACK routine (version 3.1) --
*     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd..
*     March 2008
*
*     .. Scalar Arguments ..
      INTEGER            INFO, LDA, M, N
*     ..
*     .. Array Arguments ..
      INTEGER            IPIV( * )
      COMPLEX            A( LDA, * )
*     ..
*
*  Purpose
*  =======
*
*  CGETRF computes an LU factorization of a general M-by-N matrix A
*  using partial pivoting with row interchanges.
*
*  The factorization has the form
*     A = P * L * U
*  where P is a permutation matrix, L is lower triangular with unit
*  diagonal elements (lower trapezoidal if m > n), and U is upper
*  triangular (upper trapezoidal if m < n).
*
*  This is the Crout Level 3 BLAS version of the algorithm.
*
*  Arguments
*  =========
*
*  M       (input) INTEGER
*          The number of rows of the matrix A.  M >= 0.
*
*  N       (input) INTEGER
*          The number of columns of the matrix A.  N >= 0.
*
*  A       (input/output) COMPLEX array, dimension (LDA,N)
*          On entry, the M-by-N matrix to be factored.
*          On exit, the factors L and U from the factorization
*          A = P*L*U; the unit diagonal elements of L are not stored.
*
*  LDA     (input) INTEGER
*          The leading dimension of the array A.  LDA >= max(1,M).
*
*  IPIV    (output) INTEGER array, dimension (min(M,N))
*          The pivot indices; for 1 <= i <= min(M,N), row i of the
*          matrix was interchanged with row IPIV(i).
*
*  INFO    (output) INTEGER
*          = 0:  successful exit
*          < 0:  if INFO = -i, the i-th argument had an illegal value
*          > 0:  if INFO = i, U(i,i) is exactly zero. The factorization
*                has been completed, but the factor U is exactly
*                singular, and division by zero will occur if it is used
*                to solve a system of equations.
*
*  =====================================================================
*
*     .. Parameters ..
      COMPLEX            ONE
      PARAMETER          ( ONE = ( 1.0E+00.0E+0 ) )
*     ..
*     .. Local Scalars ..
      INTEGER            I, IINFO, J, JB, NB
*     ..
*     .. External Subroutines ..
      EXTERNAL           CGEMM, CGETF2, CLASWP, CTRSM, XERBLA
*     ..
*     .. External Functions ..
      INTEGER            ILAENV
      EXTERNAL           ILAENV
*     ..
*     .. Intrinsic Functions ..
      INTRINSIC          MAXMINMOD
*     ..
*     .. Executable Statements ..
*
*     Test the input parameters.
*
      INFO = 0
      IF( M.LT.0 ) THEN
         INFO = -1
      ELSE IF( N.LT.0 ) THEN
         INFO = -2
      ELSE IF( LDA.LT.MAX1, M ) ) THEN
         INFO = -4
      END IF
      IF( INFO.NE.0 ) THEN
         CALL XERBLA( 'CGETRF'-INFO )
         RETURN
      END IF
*
*     Quick return if possible
*
      IF( M.EQ.0 .OR. N.EQ.0 )
     $   RETURN
*
*     Determine the block size for this environment.
*
      NB = ILAENV( 1'CGETRF'' ', M, N, -1-1 )
      IF( NB.LE.1 .OR. NB.GE.MIN( M, N ) ) THEN
*
*        Use unblocked code.
*
         CALL CGETF2( M, N, A, LDA, IPIV, INFO )
      ELSE
*
*        Use blocked code.
*
         DO 20 J = 1MIN( M, N ), NB
            JB = MINMIN( M, N )-J+1, NB )
*
*           Update current block.
*
            CALL CGEMM( 'No transpose''No transpose'
     $                 M-J+1, JB, J-1-ONE, 
     $                 A( J, 1 ), LDA, A( 1, J ), LDA, ONE,
     $                 A( J, J ), LDA )
            
*
*           Factor diagonal and subdiagonal blocks and test for exact
*           singularity.
*
            CALL CGETF2( M-J+1, JB, A( J, J ), LDA, IPIV( J ), IINFO )
*
*           Adjust INFO and the pivot indices.
*
            IF( INFO.EQ.0 .AND. IINFO.GT.0 )
     $         INFO = IINFO + J - 1
            DO 10 I = J, MIN( M, J+JB-1 )
               IPIV( I ) = J - 1 + IPIV( I )
   10       CONTINUE
*            
*           Apply interchanges to column 1:J-1            
*
            CALL CLASWP( J-1, A, LDA, J, J+JB-1, IPIV, 1 )
*
            IF ( J+JB.LE.N ) THEN
*            
*              Apply interchanges to column J+JB:N            
*
               CALL CLASWP( N-J-JB+1, A( 1, J+JB ), LDA, J, J+JB-1
     $                     IPIV, 1 )
*               
               CALL CGEMM( 'No transpose''No transpose'
     $                    JB, N-J-JB+1, J-1-ONE, 
     $                    A( J, 1 ), LDA, A( 1, J+JB ), LDA, ONE,
     $                    A( J, J+JB ), LDA )
*
*              Compute block row of U.
*
               CALL CTRSM( 'Left''Lower''No transpose''Unit',
     $                    JB, N-J-JB+1, ONE, A( J, J ), LDA, 
     $                    A( J, J+JB ), LDA )
            END IF

   20    CONTINUE

      END IF
      RETURN
*
*     End of CGETRF
*
      END