1
       2
       3
       4
       5
       6
       7
       8
       9
      10
      11
      12
      13
      14
      15
      16
      17
      18
      19
      20
      21
      22
      23
      24
      25
      26
      27
      28
      29
      30
      31
      32
      33
      34
      35
      36
      37
      38
      39
      40
      41
      42
      43
      44
      45
      46
      47
      48
      49
      50
      51
      52
      53
      54
      55
      56
      57
      58
      59
      60
      61
      62
      63
      64
      65
      66
      67
      68
      69
      70
      71
      72
      73
      74
      75
      76
      77
      78
      79
      80
      81
      82
      83
      84
      85
      86
      87
      88
      89
      90
      91
      92
      93
      94
      95
      96
      97
      98
      99
     100
     101
     102
     103
     104
     105
     106
     107
     108
     109
     110
     111
     112
     113
     114
     115
     116
     117
     118
     119
     120
     121
     122
     123
     124
     125
     126
     127
     128
     129
     130
     131
     132
     133
     134
     135
     136
     137
     138
     139
     140
     141
     142
     143
     144
     145
     146
     147
     148
     149
     150
     151
     152
     153
     154
     155
     156
     157
     158
     159
     160
     161
     162
     163
     164
     165
     166
     167
     168
     169
     170
     171
     172
     173
     174
     175
     176
     177
     178
     179
     180
     181
     182
     183
     184
     185
     186
     187
     188
     189
     190
     191
     192
     193
     194
     195
     196
     197
     198
     199
     200
     201
     202
     203
     204
     205
     206
     207
     208
     209
     210
     211
     212
     213
     214
     215
     216
     217
     218
     219
     220
     221
     222
     223
     224
      SUBROUTINE CGETRF( M, N, A, LDA, IPIV, INFO )
      IMPLICIT NONE
*
*  -- LAPACK routine (version 3.X) --
*     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd..
*     May 2008
*
*     .. Scalar Arguments ..
      INTEGER            INFO, LDA, M, N
*     ..
*     .. Array Arguments ..
      INTEGER            IPIV( * )
      COMPLEX            A( LDA, * )
*     ..
*
*  Purpose
*  =======
*
*  CGETRF computes an LU factorization of a general M-by-N matrix A
*  using partial pivoting with row interchanges.
*
*  The factorization has the form
*     A = P * L * U
*  where P is a permutation matrix, L is lower triangular with unit
*  diagonal elements (lower trapezoidal if m > n), and U is upper
*  triangular (upper trapezoidal if m < n).
*
*  This code implements an iterative version of Sivan Toledo's recursive
*  LU algorithm[1].  For square matrices, this iterative versions should
*  be within a factor of two of the optimum number of memory transfers.
*
*  The pattern is as follows, with the large blocks of U being updated
*  in one call to DTRSM, and the dotted lines denoting sections that
*  have had all pending permutations applied:
*
*   1 2 3 4 5 6 7 8
*  +-+-+---+-------+------
*  | |1|   |       |
*  |.+-+ 2 |       |
*  | | |   |       |
*  |.|.+-+-+   4   |
*  | | | |1|       |
*  | | |.+-+       |
*  | | | | |       |
*  |.|.|.|.+-+-+---+  8
*  | | | | | |1|   |
*  | | | | |.+-+ 2 |
*  | | | | | | |   |
*  | | | | |.|.+-+-+
*  | | | | | | | |1|
*  | | | | | | |.+-+
*  | | | | | | | | |
*  |.|.|.|.|.|.|.|.+-----
*  | | | | | | | | |
*
*  The 1-2-1-4-1-2-1-8-... pattern is the position of the last 1 bit in
*  the binary expansion of the current column.  Each Schur update is
*  applied as soon as the necessary portion of U is available.
*
*  [1] Toledo, S. 1997. Locality of Reference in LU Decomposition with
*  Partial Pivoting. SIAM J. Matrix Anal. Appl. 18, 4 (Oct. 1997),
*  1065-1081. http://dx.doi.org/10.1137/S0895479896297744
*
*  Arguments
*  =========
*
*  M       (input) INTEGER
*          The number of rows of the matrix A.  M >= 0.
*
*  N       (input) INTEGER
*          The number of columns of the matrix A.  N >= 0.
*
*  A       (input/output) COMPLEX array, dimension (LDA,N)
*          On entry, the M-by-N matrix to be factored.
*          On exit, the factors L and U from the factorization
*          A = P*L*U; the unit diagonal elements of L are not stored.
*
*  LDA     (input) INTEGER
*          The leading dimension of the array A.  LDA >= max(1,M).
*
*  IPIV    (output) INTEGER array, dimension (min(M,N))
*          The pivot indices; for 1 <= i <= min(M,N), row i of the
*          matrix was interchanged with row IPIV(i).
*
*  INFO    (output) INTEGER
*          = 0:  successful exit
*          < 0:  if INFO = -i, the i-th argument had an illegal value
*          > 0:  if INFO = i, U(i,i) is exactly zero. The factorization
*                has been completed, but the factor U is exactly
*                singular, and division by zero will occur if it is used
*                to solve a system of equations.
*
*  =====================================================================
*
*     .. Parameters ..
      COMPLEX            ONE, NEGONE
      REAL               ZERO
      PARAMETER          ( ONE = (1.0E+00.0E+0) )
      PARAMETER          ( NEGONE = (-1.0E+00.0E+0) )
      PARAMETER          ( ZERO = 0.0E+0 )
*     ..
*     .. Local Scalars ..
      REAL               SFMIN, PIVMAG
      COMPLEX            TMP
      INTEGER            I, J, JP, NSTEP, NTOPIV, NPIVED, KAHEAD
      INTEGER            KSTART, IPIVSTART, JPIVSTART, KCOLS
*     ..
*     .. External Functions ..
      REAL               SLAMCH
      INTEGER            ICAMAX
      LOGICAL            SISNAN
      EXTERNAL           SLAMCH, ICAMAX, SISNAN
*     ..
*     .. External Subroutines ..
      EXTERNAL           CTRSM, CSCAL, XERBLA, CLASWP
*     ..
*     .. Intrinsic Functions ..
      INTRINSIC          MAXMINIANDABS
*     ..
*     .. Executable Statements ..
*
*     Test the input parameters.
*
      INFO = 0
      IF( M.LT.0 ) THEN
         INFO = -1
      ELSE IF( N.LT.0 ) THEN
         INFO = -2
      ELSE IF( LDA.LT.MAX1, M ) ) THEN
         INFO = -4
      END IF
      IF( INFO.NE.0 ) THEN
         CALL XERBLA( 'CGETRF'-INFO )
         RETURN
      END IF
*
*     Quick return if possible
*
      IF( M.EQ.0 .OR. N.EQ.0 )
     $   RETURN
*
*     Compute machine safe minimum
*
      SFMIN = SLAMCH( 'S' )
*
      NSTEP = MIN( M, N )
      DO J = 1, NSTEP
         KAHEAD = IAND( J, -J )
         KSTART = J + 1 - KAHEAD
         KCOLS = MIN( KAHEAD, M-J )
*
*        Find pivot.
*
         JP = J - 1 + ICAMAX( M-J+1, A( J, J ), 1 )
         IPIV( J ) = JP

!        Permute just this column.
         IF (JP .NE. J) THEN
            TMP = A( J, J )
            A( J, J ) = A( JP, J )
            A( JP, J ) = TMP
         END IF

!        Apply pending permutations to L
         NTOPIV = 1
         IPIVSTART = J
         JPIVSTART = J - NTOPIV
         DO WHILE ( NTOPIV .LT. KAHEAD )
            CALL CLASWP( NTOPIV, A( 1, JPIVSTART ), LDA, IPIVSTART, J,
     $           IPIV, 1 )
            IPIVSTART = IPIVSTART - NTOPIV;
            NTOPIV = NTOPIV * 2;
            JPIVSTART = JPIVSTART - NTOPIV;
         END DO

!        Permute U block to match L
         CALL CLASWP( KCOLS, A( 1,J+1 ), LDA, KSTART, J, IPIV, 1 )

!        Factor the current column
         PIVMAG = ABS( A( J, J ) )
         IF( PIVMAG.NE.ZERO .AND. .NOT.SISNAN( PIVMAG ) ) THEN
               IF( PIVMAG .GE. SFMIN ) THEN
                  CALL CSCAL( M-J, ONE / A( J, J ), A( J+1, J ), 1 )
               ELSE
                 DO I = 1, M-J
                    A( J+I, J ) = A( J+I, J ) / A( J, J )
                 END DO
               END IF
         ELSE IF( PIVMAG .EQ. ZERO .AND. INFO .EQ. 0 ) THEN
            INFO = J
         END IF

!        Solve for U block.
         CALL CTRSM( 'Left''Lower''No transpose''Unit', KAHEAD,
     $        KCOLS, ONE, A( KSTART, KSTART ), LDA,
     $        A( KSTART, J+1 ), LDA )
!        Schur complement.
         CALL CGEMM( 'No transpose''No transpose', M-J,
     $        KCOLS, KAHEAD, NEGONE, A( J+1, KSTART ), LDA,
     $        A( KSTART, J+1 ), LDA, ONE, A( J+1, J+1 ), LDA )
      END DO

!     Handle pivot permutations on the way out of the recursion
      NPIVED = IAND( NSTEP, -NSTEP )
      J = NSTEP - NPIVED
      DO WHILE ( J .GT. 0 )
         NTOPIV = IAND( J, -J )
         CALL CLASWP( NTOPIV, A( 1, J-NTOPIV+1 ), LDA, J+1, NSTEP,
     $        IPIV, 1 )
         J = J - NTOPIV
      END DO

!     If short and wide, handle the rest of the columns.
      IF ( M .LT. N ) THEN
         CALL CLASWP( N-M, A( 1, M+KCOLS+1 ), LDA, 1, M, IPIV, 1 )
         CALL CTRSM( 'Left''Lower''No transpose''Unit', M,
     $        N-M, ONE, A, LDA, A( 1,M+KCOLS+1 ), LDA )
      END IF

      RETURN
*
*     End of CGETRF
*
      END