1
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 |
SUBROUTINE DGETRF( M, N, A, LDA, IPIV, INFO )
IMPLICIT NONE * * -- LAPACK routine (version 3.X) -- * Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. * May 2008 * * .. Scalar Arguments .. INTEGER INFO, LDA, M, N * .. * .. Array Arguments .. INTEGER IPIV( * ) DOUBLE PRECISION A( LDA, * ) * .. * * Purpose * ======= * * DGETRF computes an LU factorization of a general M-by-N matrix A * using partial pivoting with row interchanges. * * The factorization has the form * A = P * L * U * where P is a permutation matrix, L is lower triangular with unit * diagonal elements (lower trapezoidal if m > n), and U is upper * triangular (upper trapezoidal if m < n). * * This code implements an iterative version of Sivan Toledo's recursive * LU algorithm[1]. For square matrices, this iterative versions should * be within a factor of two of the optimum number of memory transfers. * * The pattern is as follows, with the large blocks of U being updated * in one call to DTRSM, and the dotted lines denoting sections that * have had all pending permutations applied: * * 1 2 3 4 5 6 7 8 * +-+-+---+-------+------ * | |1| | | * |.+-+ 2 | | * | | | | | * |.|.+-+-+ 4 | * | | | |1| | * | | |.+-+ | * | | | | | | * |.|.|.|.+-+-+---+ 8 * | | | | | |1| | * | | | | |.+-+ 2 | * | | | | | | | | * | | | | |.|.+-+-+ * | | | | | | | |1| * | | | | | | |.+-+ * | | | | | | | | | * |.|.|.|.|.|.|.|.+----- * | | | | | | | | | * * The 1-2-1-4-1-2-1-8-... pattern is the position of the last 1 bit in * the binary expansion of the current column. Each Schur update is * applied as soon as the necessary portion of U is available. * * [1] Toledo, S. 1997. Locality of Reference in LU Decomposition with * Partial Pivoting. SIAM J. Matrix Anal. Appl. 18, 4 (Oct. 1997), * 1065-1081. http://dx.doi.org/10.1137/S0895479896297744 * * Arguments * ========= * * M (input) INTEGER * The number of rows of the matrix A. M >= 0. * * N (input) INTEGER * The number of columns of the matrix A. N >= 0. * * A (input/output) DOUBLE PRECISION array, dimension (LDA,N) * On entry, the M-by-N matrix to be factored. * On exit, the factors L and U from the factorization * A = P*L*U; the unit diagonal elements of L are not stored. * * LDA (input) INTEGER * The leading dimension of the array A. LDA >= max(1,M). * * IPIV (output) INTEGER array, dimension (min(M,N)) * The pivot indices; for 1 <= i <= min(M,N), row i of the * matrix was interchanged with row IPIV(i). * * INFO (output) INTEGER * = 0: successful exit * < 0: if INFO = -i, the i-th argument had an illegal value * > 0: if INFO = i, U(i,i) is exactly zero. The factorization * has been completed, but the factor U is exactly * singular, and division by zero will occur if it is used * to solve a system of equations. * * ===================================================================== * * .. Parameters .. DOUBLE PRECISION ONE, ZERO, NEGONE PARAMETER ( ONE = 1.0D+0, ZERO = 0.0D+0 ) PARAMETER ( NEGONE = -1.0D+0 ) * .. * .. Local Scalars .. DOUBLE PRECISION SFMIN, TMP INTEGER I, J, JP, NSTEP, NTOPIV, NPIVED, KAHEAD INTEGER KSTART, IPIVSTART, JPIVSTART, KCOLS * .. * .. External Functions .. DOUBLE PRECISION DLAMCH INTEGER IDAMAX LOGICAL DISNAN EXTERNAL DLAMCH, IDAMAX, DISNAN * .. * .. External Subroutines .. EXTERNAL DTRSM, DSCAL, XERBLA, DLASWP * .. * .. Intrinsic Functions .. INTRINSIC MAX, MIN, IAND * .. * .. Executable Statements .. * * Test the input parameters. * INFO = 0 IF( M.LT.0 ) THEN INFO = -1 ELSE IF( N.LT.0 ) THEN INFO = -2 ELSE IF( LDA.LT.MAX( 1, M ) ) THEN INFO = -4 END IF IF( INFO.NE.0 ) THEN CALL XERBLA( 'DGETRF', -INFO ) RETURN END IF * * Quick return if possible * IF( M.EQ.0 .OR. N.EQ.0 ) $ RETURN * * Compute machine safe minimum * SFMIN = DLAMCH( 'S' ) * NSTEP = MIN( M, N ) DO J = 1, NSTEP KAHEAD = IAND( J, -J ) KSTART = J + 1 - KAHEAD KCOLS = MIN( KAHEAD, M-J ) * * Find pivot. * JP = J - 1 + IDAMAX( M-J+1, A( J, J ), 1 ) IPIV( J ) = JP ! Permute just this column. IF (JP .NE. J) THEN TMP = A( J, J ) A( J, J ) = A( JP, J ) A( JP, J ) = TMP END IF ! Apply pending permutations to L NTOPIV = 1 IPIVSTART = J JPIVSTART = J - NTOPIV DO WHILE ( NTOPIV .LT. KAHEAD ) CALL DLASWP( NTOPIV, A( 1, JPIVSTART ), LDA, IPIVSTART, J, $ IPIV, 1 ) IPIVSTART = IPIVSTART - NTOPIV; NTOPIV = NTOPIV * 2; JPIVSTART = JPIVSTART - NTOPIV; END DO ! Permute U block to match L CALL DLASWP( KCOLS, A( 1,J+1 ), LDA, KSTART, J, IPIV, 1 ) ! Factor the current column IF( A( J, J ).NE.ZERO .AND. .NOT.DISNAN( A( J, J ) ) ) THEN IF( ABS(A( J, J )) .GE. SFMIN ) THEN CALL DSCAL( M-J, ONE / A( J, J ), A( J+1, J ), 1 ) ELSE DO I = 1, M-J A( J+I, J ) = A( J+I, J ) / A( J, J ) END DO END IF ELSE IF( A( J,J ) .EQ. ZERO .AND. INFO .EQ. 0 ) THEN INFO = J END IF ! Solve for U block. CALL DTRSM( 'Left', 'Lower', 'No transpose', 'Unit', KAHEAD, $ KCOLS, ONE, A( KSTART, KSTART ), LDA, $ A( KSTART, J+1 ), LDA ) ! Schur complement. CALL DGEMM( 'No transpose', 'No transpose', M-J, $ KCOLS, KAHEAD, NEGONE, A( J+1, KSTART ), LDA, $ A( KSTART, J+1 ), LDA, ONE, A( J+1, J+1 ), LDA ) END DO ! Handle pivot permutations on the way out of the recursion NPIVED = IAND( NSTEP, -NSTEP ) J = NSTEP - NPIVED DO WHILE ( J .GT. 0 ) NTOPIV = IAND( J, -J ) CALL DLASWP( NTOPIV, A( 1, J-NTOPIV+1 ), LDA, J+1, NSTEP, $ IPIV, 1 ) J = J - NTOPIV END DO ! If short and wide, handle the rest of the columns. IF ( M .LT. N ) THEN CALL DLASWP( N-M, A( 1, M+KCOLS+1 ), LDA, 1, M, IPIV, 1 ) CALL DTRSM( 'Left', 'Lower', 'No transpose', 'Unit', M, $ N-M, ONE, A, LDA, A( 1,M+KCOLS+1 ), LDA ) END IF RETURN * * End of DGETRF * END |