1
       2
       3
       4
       5
       6
       7
       8
       9
      10
      11
      12
      13
      14
      15
      16
      17
      18
      19
      20
      21
      22
      23
      24
      25
      26
      27
      28
      29
      30
      31
      32
      33
      34
      35
      36
      37
      38
      39
      40
      41
      42
      43
      44
      45
      46
      47
      48
      49
      50
      51
      52
      53
      54
      55
      56
      57
      58
      59
      60
      61
      62
      63
      64
      65
      66
      67
      68
      69
      70
      71
      72
      73
      74
      75
      76
      77
      78
      79
      80
      81
      82
      83
      84
      85
      86
      87
      88
      89
      90
      91
      92
      93
      94
      95
      96
      97
      98
      99
     100
     101
     102
     103
     104
     105
     106
     107
     108
     109
     110
     111
     112
     113
     114
     115
     116
     117
     118
     119
     120
     121
     122
     123
     124
     125
     126
     127
     128
     129
     130
     131
     132
     133
     134
     135
     136
     137
     138
     139
     140
     141
     142
     143
     144
     145
     146
     147
     148
     149
     150
     151
     152
     153
     154
     155
     156
     157
     158
     159
     160
     161
     162
     163
     164
     165
     166
     167
     168
     169
     170
     171
     172
     173
     174
     175
     176
     177
     178
     179
     180
     181
     182
     183
     184
     185
     186
     187
     188
     189
     190
     191
     192
     193
     194
     195
     196
     197
     198
     199
     200
     201
     202
     203
     204
     205
     206
     207
     208
     209
     210
     211
     212
     213
     214
     215
     216
     217
     218
     219
     220
     221
     222
     223
     224
     225
     226
     227
     228
     229
     230
     231
     232
     233
     234
     235
     236
     237
     238
     239
     240
     241
     242
     243
     244
     245
     246
     247
     248
     249
     250
     251
     252
     253
     254
     255
     256
     257
     258
     259
     260
     261
     262
     263
     264
     265
     266
     267
     268
     269
     270
     271
     272
     273
     274
     275
     276
     277
     278
     279
     280
     281
     282
     283
     284
     285
     286
     287
     288
     289
     290
     291
     292
     293
     294
     295
     296
     297
     298
     299
     300
     301
     302
     303
     304
     305
     306
     307
     308
     309
     310
     311
     312
     313
     314
     315
     316
     317
     318
     319
     320
     321
     322
     323
     324
     325
     326
     327
     328
     329
     330
     331
     332
     333
     334
     335
     336
     337
     338
     339
     340
     341
     342
     343
      SUBROUTINE CGEQRF ( M, N, A, LDA, TAU, WORK, LWORK, INFO )
*
*  -- LAPACK routine (version 3.1) --
*     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd..
*     March 2008
*
*     .. Scalar Arguments ..
      INTEGER            INFO, LDA, LWORK, M, N
*     ..
*     .. Array Arguments ..
      COMPLEX            A( LDA, * ), TAU( * ), WORK( * )
*     ..
*
*  Purpose
*  =======
*
*  CGEQRF computes a QR factorization of a real M-by-N matrix A:
*  A = Q * R.
*
*  This is the left-looking Level 3 BLAS version of the algorithm.
*
*  Arguments
*  =========
*
*  M       (input) INTEGER
*          The number of rows of the matrix A.  M >= 0.
*
*  N       (input) INTEGER
*          The number of columns of the matrix A.  N >= 0.
*
*  A       (input/output) COMPLEX array, dimension (LDA,N)
*          On entry, the M-by-N matrix A.
*          On exit, the elements on and above the diagonal of the array
*          contain the min(M,N)-by-N upper trapezoidal matrix R (R is
*          upper triangular if m >= n); the elements below the diagonal,
*          with the array TAU, represent the orthogonal matrix Q as a
*          product of min(m,n) elementary reflectors (see Further
*          Details).
*
*  LDA     (input) INTEGER
*          The leading dimension of the array A.  LDA >= max(1,M).
*
*  TAU     (output) COMPLEX array, dimension (min(M,N))
*          The scalar factors of the elementary reflectors (see Further
*          Details).
*
*  WORK    (workspace/output) COMPLEX array, dimension (MAX(1,LWORK))
*          On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
*
*  LWORK   (input) INTEGER
*
*          The dimension of the array WORK. The dimension can be divided into three parts.
*
*          1) The part for the triangular factor T. If the very last T is not bigger 
*             than any of the rest, then this part is NB x ceiling(K/NB), otherwise, 
*             NB x (K-NT), where K = min(M,N) and NT is the dimension of the very last T              
*
*          2) The part for the very last T when T is bigger than any of the rest T. 
*             The size of this part is NT x NT, where NT = K - ceiling ((K-NX)/NB) x NB,
*             where K = min(M,N), NX is calculated by
*                   NX = MAX( 0, ILAENV( 3, 'CGEQRF', ' ', M, N, -1, -1 ) )
*
*          3) The part for dlarfb is of size max((N-M)*K, (N-M)*NB, K*NB, NB*NB)
*
*          So LWORK = part1 + part2 + part3
*
*          If LWORK = -1, then a workspace query is assumed; the routine
*          only calculates the optimal size of the WORK array, returns
*          this value as the first entry of the WORK array, and no error
*          message related to LWORK is issued by XERBLA.
*
*  INFO    (output) INTEGER
*          = 0:  successful exit
*          < 0:  if INFO = -i, the i-th argument had an illegal value
*
*  Further Details
*  ===============
*
*  The matrix Q is represented as a product of elementary reflectors
*
*     Q = H(1) H(2) . . . H(k), where k = min(m,n).
*
*  Each H(i) has the form
*
*     H(i) = I - tau * v * v'
*
*  where tau is a real scalar, and v is a real vector with
*  v(1:i-1) = 0 and v(i) = 1; v(i+1:m) is stored on exit in A(i+1:m,i),
*  and tau in TAU(i).
*
*  =====================================================================
*
*     .. Local Scalars ..
      LOGICAL            LQUERY
      INTEGER            I, IB, IINFO, IWS, J, K, LWKOPT, NB,
     $                   NBMIN, NX, LBWORK, NT, LLWORK
*     ..
*     .. External Subroutines ..
      EXTERNAL           CGEQR2, CLARFB, CLARFT, XERBLA
*     ..
*     .. Intrinsic Functions ..
      INTRINSIC          MAXMIN
*     ..
*     .. External Functions ..
      INTEGER            ILAENV
      REAL               SCEIL
      EXTERNAL           ILAENV, SCEIL
*     ..
*     .. Executable Statements ..

      INFO = 0
      NBMIN = 2
      NX = 0
      IWS = N
      K = MIN( M, N )
      NB = ILAENV( 1'CGEQRF'' ', M, N, -1-1 )

      IF( NB.GT.1 .AND. NB.LT.K ) THEN
*
*        Determine when to cross over from blocked to unblocked code.
*
         NX = MAX0, ILAENV( 3'CGEQRF'' ', M, N, -1-1 ) )
      END IF
*
*     Get NT, the size of the very last T, which is the left-over from in-between K-NX and K to K, eg.:
*
*            NB=3     2NB=6       K=10
*            |        |           |    
*      1--2--3--4--5--6--7--8--9--10
*                  |     \________/
*               K-NX=5      NT=4
*
*     So here 4 x 4 is the last T stored in the workspace
*
      NT = K-SCEIL(REAL(K-NX)/REAL(NB))*NB

*
*     optimal workspace = space for dlarfb + space for normal T's + space for the last T
*
      LLWORK = MAX (MAX((N-M)*K, (N-M)*NB), MAX(K*NB, NB*NB))
      LLWORK = SCEIL(REAL(LLWORK)/REAL(NB))

      IF ( NT.GT.NB ) THEN

          LBWORK = K-NT 
*
*         Optimal workspace for dlarfb = MAX(1,N)*NT
*
          LWKOPT = (LBWORK+LLWORK)*NB
          WORK( 1 ) = (LWKOPT+NT*NT)

      ELSE

          LBWORK = SCEIL(REAL(K)/REAL(NB))*NB
          LWKOPT = (LBWORK+LLWORK-NB)*NB 
          WORK( 1 ) = LWKOPT

      END IF

*
*     Test the input arguments
*
      LQUERY = ( LWORK.EQ.-1 )
      IF( M.LT.0 ) THEN
         INFO = -1
      ELSE IF( N.LT.0 ) THEN
         INFO = -2
      ELSE IF( LDA.LT.MAX1, M ) ) THEN
         INFO = -4
      ELSE IF( LWORK.LT.MAX1, N ) .AND. .NOT.LQUERY ) THEN
         INFO = -7
      END IF
      IF( INFO.NE.0 ) THEN
         CALL XERBLA( 'CGEQRF'-INFO )
         RETURN
      ELSE IF( LQUERY ) THEN
         RETURN
      END IF
*
*     Quick return if possible
*
      IF( K.EQ.0 ) THEN
         WORK( 1 ) = 1
         RETURN
      END IF
*
      IF( NB.GT.1 .AND. NB.LT.K ) THEN

         IF( NX.LT.K ) THEN
*
*           Determine if workspace is large enough for blocked code.
*
            IF ( NT.LE.NB ) THEN
                IWS = (LBWORK+LLWORK-NB)*NB
            ELSE
                IWS = (LBWORK+LLWORK)*NB+NT*NT
            END IF

            IF( LWORK.LT.IWS ) THEN
*
*              Not enough workspace to use optimal NB:  reduce NB and
*              determine the minimum value of NB.
*
               IF ( NT.LE.NB ) THEN
                    NB = LWORK / (LLWORK+(LBWORK-NB))
               ELSE
                    NB = (LWORK-NT*NT)/(LBWORK+LLWORK)
               END IF

               NBMIN = MAX2, ILAENV( 2'CGEQRF'' ', M, N, -1,
     $                 -1 ) )
            END IF
         END IF
      END IF
*
      IF( NB.GE.NBMIN .AND. NB.LT..AND. NX.LT.K ) THEN
*
*        Use blocked code initially
*
         DO 10 I = 1, K - NX, NB
            IB = MIN( K-I+1, NB )
*
*           Update the current column using old T's
*
            DO 20 J = 1, I - NB, NB
*
*              Apply H' to A(J:M,I:I+IB-1) from the left
*
               CALL CLARFB( 'Left''Transpose''Forward',
     $                      'Columnwise', M-J+1, IB, NB,
     $                      A( J, J ), LDA, WORK(J), LBWORK, 
     $                      A( J, I ), LDA, WORK(LBWORK*NB+NT*NT+1),
     $                      IB)

20          CONTINUE   
*
*           Compute the QR factorization of the current block
*           A(I:M,I:I+IB-1)
*
            CALL CGEQR2( M-I+1, IB, A( I, I ), LDA, TAU( I ), 
     $                        WORK(LBWORK*NB+NT*NT+1), IINFO )

            IF( I+IB.LE.N ) THEN
*
*              Form the triangular factor of the block reflector
*              H = H(i) H(i+1) . . . H(i+ib-1)
*
               CALL CLARFT( 'Forward''Columnwise', M-I+1, IB,
     $                      A( I, I ), LDA, TAU( I ), 
     $                      WORK(I), LBWORK )
*
            END IF
   10    CONTINUE
      ELSE
         I = 1
      END IF
*
*     Use unblocked code to factor the last or only block.
*
      IF( I.LE.K ) THEN
         
         IF ( I .NE. 1 )   THEN

             DO 30 J = 1, I - NB, NB
*
*                Apply H' to A(J:M,I:K) from the left
*
                 CALL CLARFB( 'Left''Transpose''Forward',
     $                       'Columnwise', M-J+1, K-I+1, NB,
     $                       A( J, J ), LDA, WORK(J), LBWORK, 
     $                       A( J, I ), LDA, WORK(LBWORK*NB+NT*NT+1),
     $                       K-I+1)
30           CONTINUE   

             CALL CGEQR2( M-I+1, K-I+1, A( I, I ), LDA, TAU( I ), 
     $                   WORK(LBWORK*NB+NT*NT+1),IINFO )

         ELSE
*
*        Use unblocked code to factor the last or only block.
*
         CALL CGEQR2( M-I+1, N-I+1, A( I, I ), LDA, TAU( I ), 
     $               WORK,IINFO )

         END IF
      END IF


*
*     Apply update to the column M+1:N when N > M
*
      IF ( M.LT..AND. I.NE.1THEN
*
*         Form the last triangular factor of the block reflector
*         H = H(i) H(i+1) . . . H(i+ib-1)
*
          IF ( NT .LE. NB ) THEN
               CALL CLARFT( 'Forward''Columnwise', M-I+1, K-I+1,
     $                     A( I, I ), LDA, TAU( I ), WORK(I), LBWORK )
          ELSE
               CALL CLARFT( 'Forward''Columnwise', M-I+1, K-I+1,
     $                     A( I, I ), LDA, TAU( I ), 
     $                     WORK(LBWORK*NB+1), NT )
          END IF

*
*         Apply H' to A(1:M,M+1:N) from the left
*
          DO 40 J = 1, K-NX, NB

               IB = MIN( K-J+1, NB )

               CALL CLARFB( 'Left''Transpose''Forward',
     $                     'Columnwise', M-J+1, N-M, IB,
     $                     A( J, J ), LDA, WORK(J), LBWORK, 
     $                     A( J, M+1 ), LDA, WORK(LBWORK*NB+NT*NT+1),
     $                     N-M)

40       CONTINUE   
         
         IF ( NT.LE.NB ) THEN
             CALL CLARFB( 'Left''Transpose''Forward',
     $                   'Columnwise', M-J+1, N-M, K-J+1,
     $                   A( J, J ), LDA, WORK(J), LBWORK, 
     $                   A( J, M+1 ), LDA, WORK(LBWORK*NB+NT*NT+1),
     $                   N-M)
         ELSE 
             CALL CLARFB( 'Left''Transpose''Forward',
     $                   'Columnwise', M-J+1, N-M, K-J+1,
     $                   A( J, J ), LDA, 
     $                   WORK(LBWORK*NB+1), 
     $                   NT, A( J, M+1 ), LDA, WORK(LBWORK*NB+NT*NT+1),
     $                   N-M)
         END IF
          
      END IF

      WORK( 1 ) = IWS
      RETURN
*
*     End of CGEQRF
*
      END