1
       2
       3
       4
       5
       6
       7
       8
       9
      10
      11
      12
      13
      14
      15
      16
      17
      18
      19
      20
      21
      22
      23
      24
      25
      26
      27
      28
      29
      30
      31
      32
      33
      34
      35
      36
      37
      38
      39
      40
      41
      42
      43
      44
      45
      46
      47
      48
      49
      50
      51
      52
      53
      54
      55
      56
      57
      58
      59
      60
      61
      62
      63
      64
      65
      66
      67
      68
      69
      70
      71
      72
      73
      74
      75
      76
      77
      78
      79
      80
      81
      82
      83
      84
      85
      86
      87
      88
      89
      90
      91
      92
      93
      94
      95
      96
      97
      98
      99
     100
     101
     102
     103
     104
     105
     106
     107
     108
     109
     110
     111
     112
     113
     114
     115
     116
     117
     118
     119
     120
     121
     122
     123
     124
     125
     126
     127
     128
     129
     130
     131
     132
     133
     134
     135
     136
     137
     138
     139
     140
     141
     142
     143
     144
     145
     146
     147
     148
     149
     150
     151
     152
     153
     154
     155
     156
     157
     158
     159
     160
     161
     162
     163
     164
     165
     166
     167
     168
     169
     170
     171
     172
     173
     174
     175
     176
     177
     178
     179
     180
     181
     182
     183
     184
     185
     186
     187
     188
     189
     190
     191
     192
     193
     194
     195
     196
     197
     198
     199
     200
     201
     202
     203
     204
     205
     206
     207
     208
     209
     210
     211
     212
     213
     214
     215
     216
     217
     218
     219
     220
     221
     222
     223
     224
     225
     226
     227
     228
     229
     230
     231
     232
     233
     234
     235
     236
     237
     238
     239
     240
     241
     242
     243
     244
     245
     246
     247
     248
     249
     250
     251
     252
     253
     254
     255
     256
     257
     258
     259
     260
     261
     262
     263
     264
     265
     266
     267
     268
     269
     270
     271
     272
     273
     274
     275
     276
     277
     278
     279
     280
     281
     282
     283
     284
     285
     286
     287
     288
     289
     290
     291
     292
     293
     294
     295
     296
     297
     298
     299
     300
     301
     302
     303
     304
     305
     306
     307
     308
     309
     310
     311
     312
     313
     314
     315
     316
     317
     318
     319
     320
     321
     322
     323
     324
     325
     326
     327
     328
     329
     330
     331
     332
     333
     334
     335
     336
     337
     338
     339
     340
     341
     342
     343
     344
     345
     346
     347
     348
     349
     350
     351
     352
     353
     354
     355
     356
     357
     358
     359
     360
     361
     362
     363
     364
     365
     366
     367
     368
     369
     370
     371
     372
     373
     374
     375
     376
     377
     378
     379
     380
     381
     382
     383
     384
     385
     386
     387
     388
     389
     390
     391
     392
     393
     394
     395
     396
     397
     398
     399
     400
     401
     402
     403
     404
     405
     406
     407
     408
     409
     410
     411
     412
     413
     414
     415
     416
     417
     418
     419
     420
     421
     422
     423
     424
     425
     426
     427
     428
     429
     430
     431
     432
     433
     434
     435
     436
     437
     438
     439
     440
     441
     442
     443
     444
     445
     446
     447
     448
     449
     450
     451
     452
     453
     454
     455
     456
     457
     458
     459
     460
     461
     462
     463
     464
     465
     466
     467
     468
     469
     470
     471
     472
     473
     474
     475
     476
     477
     478
     479
     480
     481
     482
     483
     484
     485
     486
     487
     488
     489
     490
     491
     492
     493
     494
     495
     496
     497
     498
     499
     500
     501
     502
     503
     504
     505
     506
     507
     508
     509
     510
     511
     512
     513
     514
     515
     516
     517
     518
     519
     520
     521
     522
     523
     524
     525
     526
     527
     528
     529
     530
     531
     532
     533
     534
     535
     536
     537
     538
     539
     540
     541
     542
     543
     544
     545
     546
     547
     548
     549
     550
     551
     552
     553
     554
     555
     556
     557
     558
     559
     560
     561
     562
     563
     564
     565
     566
     567
     568
     569
     570
     571
     572
     573
     574
     575
     576
     577
     578
     579
     580
     581
     582
     583
     584
     585
     586
     587
     588
     589
     590
     591
     592
     593
     594
     595
     596
     597
     598
     599
     600
     601
     602
     603
     604
     605
     606
     607
     608
     609
     610
     611
     612
     613
     614
     615
     616
     617
     618
     619
     620
     621
     622
     623
     624
     625
     626
     627
     628
     629
     630
     631
     632
     633
     634
     635
     636
     637
     638
     639
     640
     641
     642
     643
     644
     645
     646
     647
     648
     649
     650
     651
     652
     653
     654
     655
     656
     657
     658
     659
     660
     661
     662
     663
     664
     665
     666
     667
     668
     669
     670
     671
     672
     673
     674
     675
     676
     677
     678
     679
     680
     681
     682
     683
     684
     685
     686
     687
     688
     689
     690
     691
     692
     693
     694
     695
     696
     697
     698
     699
     700
     701
     702
     703
     704
     705
     706
     707
     708
     709
     710
     711
     712
     713
     714
     715
     716
     717
     718
     719
     720
     721
     722
     723
     724
     725
     726
     727
     728
     729
     730
     731
     732
     733
     734
     735
     736
     737
     738
     739
     740
     741
     742
     743
      SUBROUTINE CBDSQR( UPLO, N, NCVT, NRU, NCC, D, E, VT, LDVT, U,
     $                   LDU, C, LDC, RWORK, INFO )
*
*  -- LAPACK routine (version 3.2) --
*  -- LAPACK is a software package provided by Univ. of Tennessee,    --
*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
*     November 2006
*
*     .. Scalar Arguments ..
      CHARACTER          UPLO
      INTEGER            INFO, LDC, LDU, LDVT, N, NCC, NCVT, NRU
*     ..
*     .. Array Arguments ..
      REAL               D( * ), E( * ), RWORK( * )
      COMPLEX            C( LDC, * ), U( LDU, * ), VT( LDVT, * )
*     ..
*
*  Purpose
*  =======
*
*  CBDSQR computes the singular values and, optionally, the right and/or
*  left singular vectors from the singular value decomposition (SVD) of
*  a real N-by-N (upper or lower) bidiagonal matrix B using the implicit
*  zero-shift QR algorithm.  The SVD of B has the form
*  
*     B = Q * S * P**H
*  
*  where S is the diagonal matrix of singular values, Q is an orthogonal
*  matrix of left singular vectors, and P is an orthogonal matrix of
*  right singular vectors.  If left singular vectors are requested, this
*  subroutine actually returns U*Q instead of Q, and, if right singular
*  vectors are requested, this subroutine returns P**H*VT instead of
*  P**H, for given complex input matrices U and VT.  When U and VT are
*  the unitary matrices that reduce a general matrix A to bidiagonal
*  form: A = U*B*VT, as computed by CGEBRD, then
*  
*     A = (U*Q) * S * (P**H*VT)
*  
*  is the SVD of A.  Optionally, the subroutine may also compute Q**H*C
*  for a given complex input matrix C.
*
*  See "Computing  Small Singular Values of Bidiagonal Matrices With
*  Guaranteed High Relative Accuracy," by J. Demmel and W. Kahan,
*  LAPACK Working Note #3 (or SIAM J. Sci. Statist. Comput. vol. 11,
*  no. 5, pp. 873-912, Sept 1990) and
*  "Accurate singular values and differential qd algorithms," by
*  B. Parlett and V. Fernando, Technical Report CPAM-554, Mathematics
*  Department, University of California at Berkeley, July 1992
*  for a detailed description of the algorithm.
*
*  Arguments
*  =========
*
*  UPLO    (input) CHARACTER*1
*          = 'U':  B is upper bidiagonal;
*          = 'L':  B is lower bidiagonal.
*
*  N       (input) INTEGER
*          The order of the matrix B.  N >= 0.
*
*  NCVT    (input) INTEGER
*          The number of columns of the matrix VT. NCVT >= 0.
*
*  NRU     (input) INTEGER
*          The number of rows of the matrix U. NRU >= 0.
*
*  NCC     (input) INTEGER
*          The number of columns of the matrix C. NCC >= 0.
*
*  D       (input/output) REAL array, dimension (N)
*          On entry, the n diagonal elements of the bidiagonal matrix B.
*          On exit, if INFO=0, the singular values of B in decreasing
*          order.
*
*  E       (input/output) REAL array, dimension (N-1)
*          On entry, the N-1 offdiagonal elements of the bidiagonal
*          matrix B.
*          On exit, if INFO = 0, E is destroyed; if INFO > 0, D and E
*          will contain the diagonal and superdiagonal elements of a
*          bidiagonal matrix orthogonally equivalent to the one given
*          as input.
*
*  VT      (input/output) COMPLEX array, dimension (LDVT, NCVT)
*          On entry, an N-by-NCVT matrix VT.
*          On exit, VT is overwritten by P**H * VT.
*          Not referenced if NCVT = 0.
*
*  LDVT    (input) INTEGER
*          The leading dimension of the array VT.
*          LDVT >= max(1,N) if NCVT > 0; LDVT >= 1 if NCVT = 0.
*
*  U       (input/output) COMPLEX array, dimension (LDU, N)
*          On entry, an NRU-by-N matrix U.
*          On exit, U is overwritten by U * Q.
*          Not referenced if NRU = 0.
*
*  LDU     (input) INTEGER
*          The leading dimension of the array U.  LDU >= max(1,NRU).
*
*  C       (input/output) COMPLEX array, dimension (LDC, NCC)
*          On entry, an N-by-NCC matrix C.
*          On exit, C is overwritten by Q**H * C.
*          Not referenced if NCC = 0.
*
*  LDC     (input) INTEGER
*          The leading dimension of the array C.
*          LDC >= max(1,N) if NCC > 0; LDC >=1 if NCC = 0.
*
*  RWORK   (workspace) REAL array, dimension (2*N) 
*          if NCVT = NRU = NCC = 0, (max(1, 4*N-4)) otherwise
*
*  INFO    (output) INTEGER
*          = 0:  successful exit
*          < 0:  If INFO = -i, the i-th argument had an illegal value
*          > 0:  the algorithm did not converge; D and E contain the
*                elements of a bidiagonal matrix which is orthogonally
*                similar to the input matrix B;  if INFO = i, i
*                elements of E have not converged to zero.
*
*  Internal Parameters
*  ===================
*
*  TOLMUL  REAL, default = max(10,min(100,EPS**(-1/8)))
*          TOLMUL controls the convergence criterion of the QR loop.
*          If it is positive, TOLMUL*EPS is the desired relative
*             precision in the computed singular values.
*          If it is negative, abs(TOLMUL*EPS*sigma_max) is the
*             desired absolute accuracy in the computed singular
*             values (corresponds to relative accuracy
*             abs(TOLMUL*EPS) in the largest singular value.
*          abs(TOLMUL) should be between 1 and 1/EPS, and preferably
*             between 10 (for fast convergence) and .1/EPS
*             (for there to be some accuracy in the results).
*          Default is to lose at either one eighth or 2 of the
*             available decimal digits in each computed singular value
*             (whichever is smaller).
*
*  MAXITR  INTEGER, default = 6
*          MAXITR controls the maximum number of passes of the
*          algorithm through its inner loop. The algorithms stops
*          (and so fails to converge) if the number of passes
*          through the inner loop exceeds MAXITR*N**2.
*
*  =====================================================================
*
*     .. Parameters ..
      REAL               ZERO
      PARAMETER          ( ZERO = 0.0E0 )
      REAL               ONE
      PARAMETER          ( ONE = 1.0E0 )
      REAL               NEGONE
      PARAMETER          ( NEGONE = -1.0E0 )
      REAL               HNDRTH
      PARAMETER          ( HNDRTH = 0.01E0 )
      REAL               TEN
      PARAMETER          ( TEN = 10.0E0 )
      REAL               HNDRD
      PARAMETER          ( HNDRD = 100.0E0 )
      REAL               MEIGTH
      PARAMETER          ( MEIGTH = -0.125E0 )
      INTEGER            MAXITR
      PARAMETER          ( MAXITR = 6 )
*     ..
*     .. Local Scalars ..
      LOGICAL            LOWER, ROTATE
      INTEGER            I, IDIR, ISUB, ITER, J, LL, LLL, M, MAXIT, NM1,
     $                   NM12, NM13, OLDLL, OLDM
      REAL               ABSE, ABSS, COSL, COSR, CS, EPS, F, G, H, MU,
     $                   OLDCS, OLDSN, R, SHIFT, SIGMN, SIGMX, SINL,
     $                   SINR, SLL, SMAX, SMIN, SMINL, SMINOA,
     $                   SN, THRESH, TOL, TOLMUL, UNFL
*     ..
*     .. External Functions ..
      LOGICAL            LSAME
      REAL               SLAMCH
      EXTERNAL           LSAME, SLAMCH
*     ..
*     .. External Subroutines ..
      EXTERNAL           CLASR, CSROT, CSSCAL, CSWAP, SLARTG, SLAS2,
     $                   SLASQ1, SLASV2, XERBLA
*     ..
*     .. Intrinsic Functions ..
      INTRINSIC          ABSMAXMIN, REAL, SIGNSQRT
*     ..
*     .. Executable Statements ..
*
*     Test the input parameters.
*
      INFO = 0
      LOWER = LSAME( UPLO, 'L' )
      IF.NOT.LSAME( UPLO, 'U' ) .AND. .NOT.LOWER ) THEN
         INFO = -1
      ELSE IF( N.LT.0 ) THEN
         INFO = -2
      ELSE IF( NCVT.LT.0 ) THEN
         INFO = -3
      ELSE IF( NRU.LT.0 ) THEN
         INFO = -4
      ELSE IF( NCC.LT.0 ) THEN
         INFO = -5
      ELSE IF( ( NCVT.EQ.0 .AND. LDVT.LT.1 ) .OR.
     $         ( NCVT.GT.0 .AND. LDVT.LT.MAX1, N ) ) ) THEN
         INFO = -9
      ELSE IF( LDU.LT.MAX1, NRU ) ) THEN
         INFO = -11
      ELSE IF( ( NCC.EQ.0 .AND. LDC.LT.1 ) .OR.
     $         ( NCC.GT.0 .AND. LDC.LT.MAX1, N ) ) ) THEN
         INFO = -13
      END IF
      IF( INFO.NE.0 ) THEN
         CALL XERBLA( 'CBDSQR'-INFO )
         RETURN
      END IF
      IF( N.EQ.0 )
     $   RETURN
      IF( N.EQ.1 )
     $   GO TO 160
*
*     ROTATE is true if any singular vectors desired, false otherwise
*
      ROTATE = ( NCVT.GT.0 ) .OR. ( NRU.GT.0 ) .OR. ( NCC.GT.0 )
*
*     If no singular vectors desired, use qd algorithm
*
      IF.NOT.ROTATE ) THEN
         CALL SLASQ1( N, D, E, RWORK, INFO )
         RETURN
      END IF
*
      NM1 = N - 1
      NM12 = NM1 + NM1
      NM13 = NM12 + NM1
      IDIR = 0
*
*     Get machine constants
*
      EPS = SLAMCH( 'Epsilon' )
      UNFL = SLAMCH( 'Safe minimum' )
*
*     If matrix lower bidiagonal, rotate to be upper bidiagonal
*     by applying Givens rotations on the left
*
      IF( LOWER ) THEN
         DO 10 I = 1, N - 1
            CALL SLARTG( D( I ), E( I ), CS, SN, R )
            D( I ) = R
            E( I ) = SN*D( I+1 )
            D( I+1 ) = CS*D( I+1 )
            RWORK( I ) = CS
            RWORK( NM1+I ) = SN
   10    CONTINUE
*
*        Update singular vectors if desired
*
         IF( NRU.GT.0 )
     $      CALL CLASR( 'R''V''F', NRU, N, RWORK( 1 ), RWORK( N ),
     $                  U, LDU )
         IF( NCC.GT.0 )
     $      CALL CLASR( 'L''V''F', N, NCC, RWORK( 1 ), RWORK( N ),
     $                  C, LDC )
      END IF
*
*     Compute singular values to relative accuracy TOL
*     (By setting TOL to be negative, algorithm will compute
*     singular values to absolute accuracy ABS(TOL)*norm(input matrix))
*
      TOLMUL = MAX( TEN, MIN( HNDRD, EPS**MEIGTH ) )
      TOL = TOLMUL*EPS
*
*     Compute approximate maximum, minimum singular values
*
      SMAX = ZERO
      DO 20 I = 1, N
         SMAX = MAX( SMAX, ABS( D( I ) ) )
   20 CONTINUE
      DO 30 I = 1, N - 1
         SMAX = MAX( SMAX, ABS( E( I ) ) )
   30 CONTINUE
      SMINL = ZERO
      IF( TOL.GE.ZERO ) THEN
*
*        Relative accuracy desired
*
         SMINOA = ABS( D( 1 ) )
         IF( SMINOA.EQ.ZERO )
     $      GO TO 50
         MU = SMINOA
         DO 40 I = 2, N
            MU = ABS( D( I ) )*( MU / ( MU+ABS( E( I-1 ) ) ) )
            SMINOA = MIN( SMINOA, MU )
            IF( SMINOA.EQ.ZERO )
     $         GO TO 50
   40    CONTINUE
   50    CONTINUE
         SMINOA = SMINOA / SQRTREAL( N ) )
         THRESH = MAX( TOL*SMINOA, MAXITR*N*N*UNFL )
      ELSE
*
*        Absolute accuracy desired
*
         THRESH = MAXABS( TOL )*SMAX, MAXITR*N*N*UNFL )
      END IF
*
*     Prepare for main iteration loop for the singular values
*     (MAXIT is the maximum number of passes through the inner
*     loop permitted before nonconvergence signalled.)
*
      MAXIT = MAXITR*N*N
      ITER = 0
      OLDLL = -1
      OLDM = -1
*
*     M points to last element of unconverged part of matrix
*
      M = N
*
*     Begin main iteration loop
*
   60 CONTINUE
*
*     Check for convergence or exceeding iteration count
*
      IF( M.LE.1 )
     $   GO TO 160
      IF( ITER.GT.MAXIT )
     $   GO TO 200
*
*     Find diagonal block of matrix to work on
*
      IF( TOL.LT.ZERO .AND. ABS( D( M ) ).LE.THRESH )
     $   D( M ) = ZERO
      SMAX = ABS( D( M ) )
      SMIN = SMAX
      DO 70 LLL = 1, M - 1
         LL = M - LLL
         ABSS = ABS( D( LL ) )
         ABSE = ABS( E( LL ) )
         IF( TOL.LT.ZERO .AND. ABSS.LE.THRESH )
     $      D( LL ) = ZERO
         IF( ABSE.LE.THRESH )
     $      GO TO 80
         SMIN = MIN( SMIN, ABSS )
         SMAX = MAX( SMAX, ABSS, ABSE )
   70 CONTINUE
      LL = 0
      GO TO 90
   80 CONTINUE
      E( LL ) = ZERO
*
*     Matrix splits since E(LL) = 0
*
      IF( LL.EQ.M-1 ) THEN
*
*        Convergence of bottom singular value, return to top of loop
*
         M = M - 1
         GO TO 60
      END IF
   90 CONTINUE
      LL = LL + 1
*
*     E(LL) through E(M-1) are nonzero, E(LL-1) is zero
*
      IF( LL.EQ.M-1 ) THEN
*
*        2 by 2 block, handle separately
*
         CALL SLASV2( D( M-1 ), E( M-1 ), D( M ), SIGMN, SIGMX, SINR,
     $                COSR, SINL, COSL )
         D( M-1 ) = SIGMX
         E( M-1 ) = ZERO
         D( M ) = SIGMN
*
*        Compute singular vectors, if desired
*
         IF( NCVT.GT.0 )
     $      CALL CSROT( NCVT, VT( M-11 ), LDVT, VT( M, 1 ), LDVT,
     $                  COSR, SINR )
         IF( NRU.GT.0 )
     $      CALL CSROT( NRU, U( 1, M-1 ), 1, U( 1, M ), 1, COSL, SINL )
         IF( NCC.GT.0 )
     $      CALL CSROT( NCC, C( M-11 ), LDC, C( M, 1 ), LDC, COSL,
     $                  SINL )
         M = M - 2
         GO TO 60
      END IF
*
*     If working on new submatrix, choose shift direction
*     (from larger end diagonal element towards smaller)
*
      IF( LL.GT.OLDM .OR. M.LT.OLDLL ) THEN
         IFABS( D( LL ) ).GE.ABS( D( M ) ) ) THEN
*
*           Chase bulge from top (big end) to bottom (small end)
*
            IDIR = 1
         ELSE
*
*           Chase bulge from bottom (big end) to top (small end)
*
            IDIR = 2
         END IF
      END IF
*
*     Apply convergence tests
*
      IF( IDIR.EQ.1 ) THEN
*
*        Run convergence test in forward direction
*        First apply standard test to bottom of matrix
*
         IFABS( E( M-1 ) ).LE.ABS( TOL )*ABS( D( M ) ) .OR.
     $       ( TOL.LT.ZERO .AND. ABS( E( M-1 ) ).LE.THRESH ) ) THEN
            E( M-1 ) = ZERO
            GO TO 60
         END IF
*
         IF( TOL.GE.ZERO ) THEN
*
*           If relative accuracy desired,
*           apply convergence criterion forward
*
            MU = ABS( D( LL ) )
            SMINL = MU
            DO 100 LLL = LL, M - 1
               IFABS( E( LLL ) ).LE.TOL*MU ) THEN
                  E( LLL ) = ZERO
                  GO TO 60
               END IF
               MU = ABS( D( LLL+1 ) )*( MU / ( MU+ABS( E( LLL ) ) ) )
               SMINL = MIN( SMINL, MU )
  100       CONTINUE
         END IF
*
      ELSE
*
*        Run convergence test in backward direction
*        First apply standard test to top of matrix
*
         IFABS( E( LL ) ).LE.ABS( TOL )*ABS( D( LL ) ) .OR.
     $       ( TOL.LT.ZERO .AND. ABS( E( LL ) ).LE.THRESH ) ) THEN
            E( LL ) = ZERO
            GO TO 60
         END IF
*
         IF( TOL.GE.ZERO ) THEN
*
*           If relative accuracy desired,
*           apply convergence criterion backward
*
            MU = ABS( D( M ) )
            SMINL = MU
            DO 110 LLL = M - 1, LL, -1
               IFABS( E( LLL ) ).LE.TOL*MU ) THEN
                  E( LLL ) = ZERO
                  GO TO 60
               END IF
               MU = ABS( D( LLL ) )*( MU / ( MU+ABS( E( LLL ) ) ) )
               SMINL = MIN( SMINL, MU )
  110       CONTINUE
         END IF
      END IF
      OLDLL = LL
      OLDM = M
*
*     Compute shift.  First, test if shifting would ruin relative
*     accuracy, and if so set the shift to zero.
*
      IF( TOL.GE.ZERO .AND. N*TOL*( SMINL / SMAX ).LE.
     $    MAX( EPS, HNDRTH*TOL ) ) THEN
*
*        Use a zero shift to avoid loss of relative accuracy
*
         SHIFT = ZERO
      ELSE
*
*        Compute the shift from 2-by-2 block at end of matrix
*
         IF( IDIR.EQ.1 ) THEN
            SLL = ABS( D( LL ) )
            CALL SLAS2( D( M-1 ), E( M-1 ), D( M ), SHIFT, R )
         ELSE
            SLL = ABS( D( M ) )
            CALL SLAS2( D( LL ), E( LL ), D( LL+1 ), SHIFT, R )
         END IF
*
*        Test if shift negligible, and if so set to zero
*
         IF( SLL.GT.ZERO ) THEN
            IF( ( SHIFT / SLL )**2.LT.EPS )
     $         SHIFT = ZERO
         END IF
      END IF
*
*     Increment iteration count
*
      ITER = ITER + M - LL
*
*     If SHIFT = 0, do simplified QR iteration
*
      IF( SHIFT.EQ.ZERO ) THEN
         IF( IDIR.EQ.1 ) THEN
*
*           Chase bulge from top to bottom
*           Save cosines and sines for later singular vector updates
*
            CS = ONE
            OLDCS = ONE
            DO 120 I = LL, M - 1
               CALL SLARTG( D( I )*CS, E( I ), CS, SN, R )
               IF( I.GT.LL )
     $            E( I-1 ) = OLDSN*R
               CALL SLARTG( OLDCS*R, D( I+1 )*SN, OLDCS, OLDSN, D( I ) )
               RWORK( I-LL+1 ) = CS
               RWORK( I-LL+1+NM1 ) = SN
               RWORK( I-LL+1+NM12 ) = OLDCS
               RWORK( I-LL+1+NM13 ) = OLDSN
  120       CONTINUE
            H = D( M )*CS
            D( M ) = H*OLDCS
            E( M-1 ) = H*OLDSN
*
*           Update singular vectors
*
            IF( NCVT.GT.0 )
     $         CALL CLASR( 'L''V''F', M-LL+1, NCVT, RWORK( 1 ),
     $                     RWORK( N ), VT( LL, 1 ), LDVT )
            IF( NRU.GT.0 )
     $         CALL CLASR( 'R''V''F', NRU, M-LL+1, RWORK( NM12+1 ),
     $                     RWORK( NM13+1 ), U( 1, LL ), LDU )
            IF( NCC.GT.0 )
     $         CALL CLASR( 'L''V''F', M-LL+1, NCC, RWORK( NM12+1 ),
     $                     RWORK( NM13+1 ), C( LL, 1 ), LDC )
*
*           Test convergence
*
            IFABS( E( M-1 ) ).LE.THRESH )
     $         E( M-1 ) = ZERO
*
         ELSE
*
*           Chase bulge from bottom to top
*           Save cosines and sines for later singular vector updates
*
            CS = ONE
            OLDCS = ONE
            DO 130 I = M, LL + 1-1
               CALL SLARTG( D( I )*CS, E( I-1 ), CS, SN, R )
               IF( I.LT.M )
     $            E( I ) = OLDSN*R
               CALL SLARTG( OLDCS*R, D( I-1 )*SN, OLDCS, OLDSN, D( I ) )
               RWORK( I-LL ) = CS
               RWORK( I-LL+NM1 ) = -SN
               RWORK( I-LL+NM12 ) = OLDCS
               RWORK( I-LL+NM13 ) = -OLDSN
  130       CONTINUE
            H = D( LL )*CS
            D( LL ) = H*OLDCS
            E( LL ) = H*OLDSN
*
*           Update singular vectors
*
            IF( NCVT.GT.0 )
     $         CALL CLASR( 'L''V''B', M-LL+1, NCVT, RWORK( NM12+1 ),
     $                     RWORK( NM13+1 ), VT( LL, 1 ), LDVT )
            IF( NRU.GT.0 )
     $         CALL CLASR( 'R''V''B', NRU, M-LL+1, RWORK( 1 ),
     $                     RWORK( N ), U( 1, LL ), LDU )
            IF( NCC.GT.0 )
     $         CALL CLASR( 'L''V''B', M-LL+1, NCC, RWORK( 1 ),
     $                     RWORK( N ), C( LL, 1 ), LDC )
*
*           Test convergence
*
            IFABS( E( LL ) ).LE.THRESH )
     $         E( LL ) = ZERO
         END IF
      ELSE
*
*        Use nonzero shift
*
         IF( IDIR.EQ.1 ) THEN
*
*           Chase bulge from top to bottom
*           Save cosines and sines for later singular vector updates
*
            F = ( ABS( D( LL ) )-SHIFT )*
     $          ( SIGN( ONE, D( LL ) )+SHIFT / D( LL ) )
            G = E( LL )
            DO 140 I = LL, M - 1
               CALL SLARTG( F, G, COSR, SINR, R )
               IF( I.GT.LL )
     $            E( I-1 ) = R
               F = COSR*D( I ) + SINR*E( I )
               E( I ) = COSR*E( I ) - SINR*D( I )
               G = SINR*D( I+1 )
               D( I+1 ) = COSR*D( I+1 )
               CALL SLARTG( F, G, COSL, SINL, R )
               D( I ) = R
               F = COSL*E( I ) + SINL*D( I+1 )
               D( I+1 ) = COSL*D( I+1 ) - SINL*E( I )
               IF( I.LT.M-1 ) THEN
                  G = SINL*E( I+1 )
                  E( I+1 ) = COSL*E( I+1 )
               END IF
               RWORK( I-LL+1 ) = COSR
               RWORK( I-LL+1+NM1 ) = SINR
               RWORK( I-LL+1+NM12 ) = COSL
               RWORK( I-LL+1+NM13 ) = SINL
  140       CONTINUE
            E( M-1 ) = F
*
*           Update singular vectors
*
            IF( NCVT.GT.0 )
     $         CALL CLASR( 'L''V''F', M-LL+1, NCVT, RWORK( 1 ),
     $                     RWORK( N ), VT( LL, 1 ), LDVT )
            IF( NRU.GT.0 )
     $         CALL CLASR( 'R''V''F', NRU, M-LL+1, RWORK( NM12+1 ),
     $                     RWORK( NM13+1 ), U( 1, LL ), LDU )
            IF( NCC.GT.0 )
     $         CALL CLASR( 'L''V''F', M-LL+1, NCC, RWORK( NM12+1 ),
     $                     RWORK( NM13+1 ), C( LL, 1 ), LDC )
*
*           Test convergence
*
            IFABS( E( M-1 ) ).LE.THRESH )
     $         E( M-1 ) = ZERO
*
         ELSE
*
*           Chase bulge from bottom to top
*           Save cosines and sines for later singular vector updates
*
            F = ( ABS( D( M ) )-SHIFT )*SIGN( ONE, D( M ) )+SHIFT /
     $          D( M ) )
            G = E( M-1 )
            DO 150 I = M, LL + 1-1
               CALL SLARTG( F, G, COSR, SINR, R )
               IF( I.LT.M )
     $            E( I ) = R
               F = COSR*D( I ) + SINR*E( I-1 )
               E( I-1 ) = COSR*E( I-1 ) - SINR*D( I )
               G = SINR*D( I-1 )
               D( I-1 ) = COSR*D( I-1 )
               CALL SLARTG( F, G, COSL, SINL, R )
               D( I ) = R
               F = COSL*E( I-1 ) + SINL*D( I-1 )
               D( I-1 ) = COSL*D( I-1 ) - SINL*E( I-1 )
               IF( I.GT.LL+1 ) THEN
                  G = SINL*E( I-2 )
                  E( I-2 ) = COSL*E( I-2 )
               END IF
               RWORK( I-LL ) = COSR
               RWORK( I-LL+NM1 ) = -SINR
               RWORK( I-LL+NM12 ) = COSL
               RWORK( I-LL+NM13 ) = -SINL
  150       CONTINUE
            E( LL ) = F
*
*           Test convergence
*
            IFABS( E( LL ) ).LE.THRESH )
     $         E( LL ) = ZERO
*
*           Update singular vectors if desired
*
            IF( NCVT.GT.0 )
     $         CALL CLASR( 'L''V''B', M-LL+1, NCVT, RWORK( NM12+1 ),
     $                     RWORK( NM13+1 ), VT( LL, 1 ), LDVT )
            IF( NRU.GT.0 )
     $         CALL CLASR( 'R''V''B', NRU, M-LL+1, RWORK( 1 ),
     $                     RWORK( N ), U( 1, LL ), LDU )
            IF( NCC.GT.0 )
     $         CALL CLASR( 'L''V''B', M-LL+1, NCC, RWORK( 1 ),
     $                     RWORK( N ), C( LL, 1 ), LDC )
         END IF
      END IF
*
*     QR iteration finished, go back and check convergence
*
      GO TO 60
*
*     All singular values converged, so make them positive
*
  160 CONTINUE
      DO 170 I = 1, N
         IF( D( I ).LT.ZERO ) THEN
            D( I ) = -D( I )
*
*           Change sign of singular vectors, if desired
*
            IF( NCVT.GT.0 )
     $         CALL CSSCAL( NCVT, NEGONE, VT( I, 1 ), LDVT )
         END IF
  170 CONTINUE
*
*     Sort the singular values into decreasing order (insertion sort on
*     singular values, but only one transposition per singular vector)
*
      DO 190 I = 1, N - 1
*
*        Scan for smallest D(I)
*
         ISUB = 1
         SMIN = D( 1 )
         DO 180 J = 2, N + 1 - I
            IF( D( J ).LE.SMIN ) THEN
               ISUB = J
               SMIN = D( J )
            END IF
  180    CONTINUE
         IF( ISUB.NE.N+1-I ) THEN
*
*           Swap singular values and vectors
*
            D( ISUB ) = D( N+1-I )
            D( N+1-I ) = SMIN
            IF( NCVT.GT.0 )
     $         CALL CSWAP( NCVT, VT( ISUB, 1 ), LDVT, VT( N+1-I, 1 ),
     $                     LDVT )
            IF( NRU.GT.0 )
     $         CALL CSWAP( NRU, U( 1, ISUB ), 1, U( 1, N+1-I ), 1 )
            IF( NCC.GT.0 )
     $         CALL CSWAP( NCC, C( ISUB, 1 ), LDC, C( N+1-I, 1 ), LDC )
         END IF
  190 CONTINUE
      GO TO 220
*
*     Maximum number of iterations exceeded, failure to converge
*
  200 CONTINUE
      INFO = 0
      DO 210 I = 1, N - 1
         IF( E( I ).NE.ZERO )
     $      INFO = INFO + 1
  210 CONTINUE
  220 CONTINUE
      RETURN
*
*     End of CBDSQR
*
      END