1
       2
       3
       4
       5
       6
       7
       8
       9
      10
      11
      12
      13
      14
      15
      16
      17
      18
      19
      20
      21
      22
      23
      24
      25
      26
      27
      28
      29
      30
      31
      32
      33
      34
      35
      36
      37
      38
      39
      40
      41
      42
      43
      44
      45
      46
      47
      48
      49
      50
      51
      52
      53
      54
      55
      56
      57
      58
      59
      60
      61
      62
      63
      64
      65
      66
      67
      68
      69
      70
      71
      72
      73
      74
      75
      76
      77
      78
      79
      80
      81
      82
      83
      84
      85
      86
      87
      88
      89
      90
      91
      92
      93
      94
      95
      96
      97
      98
      99
     100
     101
     102
     103
     104
     105
     106
     107
     108
     109
     110
     111
     112
     113
     114
     115
     116
     117
     118
     119
     120
     121
     122
     123
     124
     125
     126
     127
     128
     129
     130
     131
     132
     133
     134
     135
     136
     137
     138
     139
     140
     141
     142
     143
     144
     145
     146
     147
     148
     149
     150
     151
     152
     153
     154
     155
     156
     157
     158
     159
     160
     161
     162
     163
     164
     165
     166
     167
     168
     169
     170
     171
     172
     173
     174
     175
     176
     177
     178
     179
     180
     181
     182
     183
     184
     185
     186
     187
     188
     189
     190
     191
     192
     193
     194
     195
     196
     197
     198
     199
     200
     201
     202
     203
     204
     205
     206
     207
     208
     209
     210
     211
     212
     213
     214
     215
     216
     217
     218
     219
     220
     221
     222
     223
     224
     225
     226
     227
     228
     229
     230
     231
     232
     233
     234
     235
     236
     237
     238
     239
     240
     241
     242
     243
     244
     245
     246
     247
     248
     249
     250
     251
     252
     253
     254
     255
     256
     257
     258
     259
     260
     261
     262
     263
     264
     265
     266
     267
     268
     269
     270
     271
     272
     273
     274
     275
     276
     277
     278
     279
     280
     281
     282
     283
     284
     285
     286
     287
     288
     289
     290
     291
     292
     293
     294
     295
     296
     297
     298
     299
     300
     301
     302
     303
     304
     305
     306
     307
     308
     309
     310
     311
     312
     313
     314
     315
     316
     317
     318
     319
     320
     321
     322
     323
     324
     325
     326
     327
     328
     329
     330
     331
     332
     333
     334
     335
     336
     337
     338
     339
     340
     341
     342
     343
     344
     345
     346
     347
     348
     349
     350
     351
     352
     353
     354
     355
     356
     357
     358
     359
     360
     361
     362
     363
     364
     365
     366
     367
     368
     369
     370
     371
     372
     373
     374
     375
     376
     377
     378
     379
     380
     381
     382
     383
     384
     385
     386
     387
     388
     389
     390
     391
     392
     393
     394
     395
     396
     397
     398
     399
     400
     401
     402
     403
     404
     405
     406
     407
     408
     409
     410
     411
     412
     413
     414
     415
     416
     417
     418
     419
     420
     421
     422
     423
     424
     425
     426
     427
     428
     429
     430
     431
     432
     433
     434
     435
     436
     437
     438
     439
     440
     441
     442
     443
     444
     445
     446
     447
     448
     449
     450
     451
     452
     453
     454
     455
     456
     457
     458
     459
     460
     461
     462
     463
     464
     465
     466
     467
     468
     469
     470
     471
     472
     473
     474
     475
     476
     477
     478
     479
     480
     481
     482
     483
     484
     485
     486
     487
     488
     489
     490
     491
     492
     493
     494
     495
     496
     497
     498
     499
     500
     501
     502
     503
     504
     505
     506
     507
     508
     509
     510
     511
     512
     513
     514
     515
     516
     517
     518
     519
     520
     521
     522
     523
     524
     525
     526
     527
     528
     529
     530
     531
     532
     533
     534
     535
     536
     537
     538
     539
     540
     541
     542
     543
     544
     545
     546
     547
     548
     549
     550
     551
     552
     553
     554
     555
     556
     557
     558
     559
     560
     561
     562
     563
     564
     565
     566
     567
     568
     569
     570
     571
     572
     573
     574
     575
     576
     577
     578
     579
     580
     581
     582
     583
     584
     585
     586
     587
     588
     589
     590
     591
     592
     593
     594
     595
     596
     597
     598
     599
     600
     601
     602
     603
     604
     605
     606
     607
     608
     609
     610
     611
     612
     613
     614
     615
     616
     617
     618
     619
     620
     621
     622
     623
     624
     625
     626
     627
     628
     629
     630
     631
     632
     633
     634
     635
     636
     637
     638
     639
     640
     641
     642
     643
     644
     645
     646
     647
     648
     649
     650
     651
     652
     653
     654
     655
     656
     657
     658
      SUBROUTINE CGBSVXX( FACT, TRANS, N, KL, KU, NRHS, AB, LDAB, AFB,
     $                    LDAFB, IPIV, EQUED, R, C, B, LDB, X, LDX,
     $                    RCOND, RPVGRW, BERR, N_ERR_BNDS,
     $                    ERR_BNDS_NORM, ERR_BNDS_COMP, NPARAMS, PARAMS,
     $                    WORK, RWORK, INFO )
*
*     -- LAPACK driver routine (version 3.2)                          --
*     -- Contributed by James Demmel, Deaglan Halligan, Yozo Hida and --
*     -- Jason Riedy of Univ. of California Berkeley.                 --
*     -- November 2008                                                --
*
*     -- LAPACK is a software package provided by Univ. of Tennessee, --
*     -- Univ. of California Berkeley and NAG Ltd.                    --
*
      IMPLICIT NONE
*     ..
*     .. Scalar Arguments ..
      CHARACTER          EQUED, FACT, TRANS
      INTEGER            INFO, LDAB, LDAFB, LDB, LDX, N, NRHS, NPARAMS,
     $                   N_ERR_BNDS
      REAL               RCOND, RPVGRW
*     ..
*     .. Array Arguments ..
      INTEGER            IPIV( * )
      COMPLEX            AB( LDAB, * ), AFB( LDAFB, * ), B( LDB, * ),
     $                   X( LDX , * ),WORK( * )
      REAL               R( * ), C( * ), PARAMS( * ), BERR( * ),
     $                   ERR_BNDS_NORM( NRHS, * ),
     $                   ERR_BNDS_COMP( NRHS, * ), RWORK( * )
*     ..
*
*     Purpose
*     =======
*
*     CGBSVXX uses the LU factorization to compute the solution to a
*     complex system of linear equations  A * X = B,  where A is an
*     N-by-N matrix and X and B are N-by-NRHS matrices.
*
*     If requested, both normwise and maximum componentwise error bounds
*     are returned. CGBSVXX will return a solution with a tiny
*     guaranteed error (O(eps) where eps is the working machine
*     precision) unless the matrix is very ill-conditioned, in which
*     case a warning is returned. Relevant condition numbers also are
*     calculated and returned.
*
*     CGBSVXX accepts user-provided factorizations and equilibration
*     factors; see the definitions of the FACT and EQUED options.
*     Solving with refinement and using a factorization from a previous
*     CGBSVXX call will also produce a solution with either O(eps)
*     errors or warnings, but we cannot make that claim for general
*     user-provided factorizations and equilibration factors if they
*     differ from what CGBSVXX would itself produce.
*
*     Description
*     ===========
*
*     The following steps are performed:
*
*     1. If FACT = 'E', real scaling factors are computed to equilibrate
*     the system:
*
*       TRANS = 'N':  diag(R)*A*diag(C)     *inv(diag(C))*X = diag(R)*B
*       TRANS = 'T': (diag(R)*A*diag(C))**T *inv(diag(R))*X = diag(C)*B
*       TRANS = 'C': (diag(R)*A*diag(C))**H *inv(diag(R))*X = diag(C)*B
*
*     Whether or not the system will be equilibrated depends on the
*     scaling of the matrix A, but if equilibration is used, A is
*     overwritten by diag(R)*A*diag(C) and B by diag(R)*B (if TRANS='N')
*     or diag(C)*B (if TRANS = 'T' or 'C').
*
*     2. If FACT = 'N' or 'E', the LU decomposition is used to factor
*     the matrix A (after equilibration if FACT = 'E') as
*
*       A = P * L * U,
*
*     where P is a permutation matrix, L is a unit lower triangular
*     matrix, and U is upper triangular.
*
*     3. If some U(i,i)=0, so that U is exactly singular, then the
*     routine returns with INFO = i. Otherwise, the factored form of A
*     is used to estimate the condition number of the matrix A (see
*     argument RCOND). If the reciprocal of the condition number is less
*     than machine precision, the routine still goes on to solve for X
*     and compute error bounds as described below.
*
*     4. The system of equations is solved for X using the factored form
*     of A.
*
*     5. By default (unless PARAMS(LA_LINRX_ITREF_I) is set to zero),
*     the routine will use iterative refinement to try to get a small
*     error and error bounds.  Refinement calculates the residual to at
*     least twice the working precision.
*
*     6. If equilibration was used, the matrix X is premultiplied by
*     diag(C) (if TRANS = 'N') or diag(R) (if TRANS = 'T' or 'C') so
*     that it solves the original system before equilibration.
*
*     Arguments
*     =========
*
*     Some optional parameters are bundled in the PARAMS array.  These
*     settings determine how refinement is performed, but often the
*     defaults are acceptable.  If the defaults are acceptable, users
*     can pass NPARAMS = 0 which prevents the source code from accessing
*     the PARAMS argument.
*
*     FACT    (input) CHARACTER*1
*     Specifies whether or not the factored form of the matrix A is
*     supplied on entry, and if not, whether the matrix A should be
*     equilibrated before it is factored.
*       = 'F':  On entry, AF and IPIV contain the factored form of A.
*               If EQUED is not 'N', the matrix A has been
*               equilibrated with scaling factors given by R and C.
*               A, AF, and IPIV are not modified.
*       = 'N':  The matrix A will be copied to AF and factored.
*       = 'E':  The matrix A will be equilibrated if necessary, then
*               copied to AF and factored.
*
*     TRANS   (input) CHARACTER*1
*     Specifies the form of the system of equations:
*       = 'N':  A * X = B     (No transpose)
*       = 'T':  A**T * X = B  (Transpose)
*       = 'C':  A**H * X = B  (Conjugate Transpose = Transpose)
*
*     N       (input) INTEGER
*     The number of linear equations, i.e., the order of the
*     matrix A.  N >= 0.
*
*     KL      (input) INTEGER
*     The number of subdiagonals within the band of A.  KL >= 0.
*
*     KU      (input) INTEGER
*     The number of superdiagonals within the band of A.  KU >= 0.
*
*     NRHS    (input) INTEGER
*     The number of right hand sides, i.e., the number of columns
*     of the matrices B and X.  NRHS >= 0.
*
*     AB      (input/output) REAL array, dimension (LDAB,N)
*     On entry, the matrix A in band storage, in rows 1 to KL+KU+1.
*     The j-th column of A is stored in the j-th column of the
*     array AB as follows:
*     AB(KU+1+i-j,j) = A(i,j) for max(1,j-KU)<=i<=min(N,j+kl)
*
*     If FACT = 'F' and EQUED is not 'N', then AB must have been
*     equilibrated by the scaling factors in R and/or C.  AB is not
*     modified if FACT = 'F' or 'N', or if FACT = 'E' and
*     EQUED = 'N' on exit.
*
*     On exit, if EQUED .ne. 'N', A is scaled as follows:
*     EQUED = 'R':  A := diag(R) * A
*     EQUED = 'C':  A := A * diag(C)
*     EQUED = 'B':  A := diag(R) * A * diag(C).
*
*     LDAB    (input) INTEGER
*     The leading dimension of the array AB.  LDAB >= KL+KU+1.
*
*     AFB     (input or output) REAL array, dimension (LDAFB,N)
*     If FACT = 'F', then AFB is an input argument and on entry
*     contains details of the LU factorization of the band matrix
*     A, as computed by CGBTRF.  U is stored as an upper triangular
*     band matrix with KL+KU superdiagonals in rows 1 to KL+KU+1,
*     and the multipliers used during the factorization are stored
*     in rows KL+KU+2 to 2*KL+KU+1.  If EQUED .ne. 'N', then AFB is
*     the factored form of the equilibrated matrix A.
*
*     If FACT = 'N', then AF is an output argument and on exit
*     returns the factors L and U from the factorization A = P*L*U
*     of the original matrix A.
*
*     If FACT = 'E', then AF is an output argument and on exit
*     returns the factors L and U from the factorization A = P*L*U
*     of the equilibrated matrix A (see the description of A for
*     the form of the equilibrated matrix).
*
*     LDAFB   (input) INTEGER
*     The leading dimension of the array AFB.  LDAFB >= 2*KL+KU+1.
*
*     IPIV    (input or output) INTEGER array, dimension (N)
*     If FACT = 'F', then IPIV is an input argument and on entry
*     contains the pivot indices from the factorization A = P*L*U
*     as computed by SGETRF; row i of the matrix was interchanged
*     with row IPIV(i).
*
*     If FACT = 'N', then IPIV is an output argument and on exit
*     contains the pivot indices from the factorization A = P*L*U
*     of the original matrix A.
*
*     If FACT = 'E', then IPIV is an output argument and on exit
*     contains the pivot indices from the factorization A = P*L*U
*     of the equilibrated matrix A.
*
*     EQUED   (input or output) CHARACTER*1
*     Specifies the form of equilibration that was done.
*       = 'N':  No equilibration (always true if FACT = 'N').
*       = 'R':  Row equilibration, i.e., A has been premultiplied by
*               diag(R).
*       = 'C':  Column equilibration, i.e., A has been postmultiplied
*               by diag(C).
*       = 'B':  Both row and column equilibration, i.e., A has been
*               replaced by diag(R) * A * diag(C).
*     EQUED is an input argument if FACT = 'F'; otherwise, it is an
*     output argument.
*
*     R       (input or output) REAL array, dimension (N)
*     The row scale factors for A.  If EQUED = 'R' or 'B', A is
*     multiplied on the left by diag(R); if EQUED = 'N' or 'C', R
*     is not accessed.  R is an input argument if FACT = 'F';
*     otherwise, R is an output argument.  If FACT = 'F' and
*     EQUED = 'R' or 'B', each element of R must be positive.
*     If R is output, each element of R is a power of the radix.
*     If R is input, each element of R should be a power of the radix
*     to ensure a reliable solution and error estimates. Scaling by
*     powers of the radix does not cause rounding errors unless the
*     result underflows or overflows. Rounding errors during scaling
*     lead to refining with a matrix that is not equivalent to the
*     input matrix, producing error estimates that may not be
*     reliable.
*
*     C       (input or output) REAL array, dimension (N)
*     The column scale factors for A.  If EQUED = 'C' or 'B', A is
*     multiplied on the right by diag(C); if EQUED = 'N' or 'R', C
*     is not accessed.  C is an input argument if FACT = 'F';
*     otherwise, C is an output argument.  If FACT = 'F' and
*     EQUED = 'C' or 'B', each element of C must be positive.
*     If C is output, each element of C is a power of the radix.
*     If C is input, each element of C should be a power of the radix
*     to ensure a reliable solution and error estimates. Scaling by
*     powers of the radix does not cause rounding errors unless the
*     result underflows or overflows. Rounding errors during scaling
*     lead to refining with a matrix that is not equivalent to the
*     input matrix, producing error estimates that may not be
*     reliable.
*
*     B       (input/output) REAL array, dimension (LDB,NRHS)
*     On entry, the N-by-NRHS right hand side matrix B.
*     On exit,
*     if EQUED = 'N', B is not modified;
*     if TRANS = 'N' and EQUED = 'R' or 'B', B is overwritten by
*        diag(R)*B;
*     if TRANS = 'T' or 'C' and EQUED = 'C' or 'B', B is
*        overwritten by diag(C)*B.
*
*     LDB     (input) INTEGER
*     The leading dimension of the array B.  LDB >= max(1,N).
*
*     X       (output) REAL array, dimension (LDX,NRHS)
*     If INFO = 0, the N-by-NRHS solution matrix X to the original
*     system of equations.  Note that A and B are modified on exit
*     if EQUED .ne. 'N', and the solution to the equilibrated system is
*     inv(diag(C))*X if TRANS = 'N' and EQUED = 'C' or 'B', or
*     inv(diag(R))*X if TRANS = 'T' or 'C' and EQUED = 'R' or 'B'.
*
*     LDX     (input) INTEGER
*     The leading dimension of the array X.  LDX >= max(1,N).
*
*     RCOND   (output) REAL
*     Reciprocal scaled condition number.  This is an estimate of the
*     reciprocal Skeel condition number of the matrix A after
*     equilibration (if done).  If this is less than the machine
*     precision (in particular, if it is zero), the matrix is singular
*     to working precision.  Note that the error may still be small even
*     if this number is very small and the matrix appears ill-
*     conditioned.
*
*     RPVGRW  (output) REAL
*     Reciprocal pivot growth.  On exit, this contains the reciprocal
*     pivot growth factor norm(A)/norm(U). The "max absolute element"
*     norm is used.  If this is much less than 1, then the stability of
*     the LU factorization of the (equilibrated) matrix A could be poor.
*     This also means that the solution X, estimated condition numbers,
*     and error bounds could be unreliable. If factorization fails with
*     0<INFO<=N, then this contains the reciprocal pivot growth factor
*     for the leading INFO columns of A.  In SGESVX, this quantity is
*     returned in WORK(1).
*
*     BERR    (output) REAL array, dimension (NRHS)
*     Componentwise relative backward error.  This is the
*     componentwise relative backward error of each solution vector X(j)
*     (i.e., the smallest relative change in any element of A or B that
*     makes X(j) an exact solution).
*
*     N_ERR_BNDS (input) INTEGER
*     Number of error bounds to return for each right hand side
*     and each type (normwise or componentwise).  See ERR_BNDS_NORM and
*     ERR_BNDS_COMP below.
*
*     ERR_BNDS_NORM  (output) REAL array, dimension (NRHS, N_ERR_BNDS)
*     For each right-hand side, this array contains information about
*     various error bounds and condition numbers corresponding to the
*     normwise relative error, which is defined as follows:
*
*     Normwise relative error in the ith solution vector:
*             max_j (abs(XTRUE(j,i) - X(j,i)))
*            ------------------------------
*                  max_j abs(X(j,i))
*
*     The array is indexed by the type of error information as described
*     below. There currently are up to three pieces of information
*     returned.
*
*     The first index in ERR_BNDS_NORM(i,:) corresponds to the ith
*     right-hand side.
*
*     The second index in ERR_BNDS_NORM(:,err) contains the following
*     three fields:
*     err = 1 "Trust/don't trust" boolean. Trust the answer if the
*              reciprocal condition number is less than the threshold
*              sqrt(n) * slamch('Epsilon').
*
*     err = 2 "Guaranteed" error bound: The estimated forward error,
*              almost certainly within a factor of 10 of the true error
*              so long as the next entry is greater than the threshold
*              sqrt(n) * slamch('Epsilon'). This error bound should only
*              be trusted if the previous boolean is true.
*
*     err = 3  Reciprocal condition number: Estimated normwise
*              reciprocal condition number.  Compared with the threshold
*              sqrt(n) * slamch('Epsilon') to determine if the error
*              estimate is "guaranteed". These reciprocal condition
*              numbers are 1 / (norm(Z^{-1},inf) * norm(Z,inf)) for some
*              appropriately scaled matrix Z.
*              Let Z = S*A, where S scales each row by a power of the
*              radix so all absolute row sums of Z are approximately 1.
*
*     See Lapack Working Note 165 for further details and extra
*     cautions.
*
*     ERR_BNDS_COMP  (output) REAL array, dimension (NRHS, N_ERR_BNDS)
*     For each right-hand side, this array contains information about
*     various error bounds and condition numbers corresponding to the
*     componentwise relative error, which is defined as follows:
*
*     Componentwise relative error in the ith solution vector:
*                    abs(XTRUE(j,i) - X(j,i))
*             max_j ----------------------
*                         abs(X(j,i))
*
*     The array is indexed by the right-hand side i (on which the
*     componentwise relative error depends), and the type of error
*     information as described below. There currently are up to three
*     pieces of information returned for each right-hand side. If
*     componentwise accuracy is not requested (PARAMS(3) = 0.0), then
*     ERR_BNDS_COMP is not accessed.  If N_ERR_BNDS .LT. 3, then at most
*     the first (:,N_ERR_BNDS) entries are returned.
*
*     The first index in ERR_BNDS_COMP(i,:) corresponds to the ith
*     right-hand side.
*
*     The second index in ERR_BNDS_COMP(:,err) contains the following
*     three fields:
*     err = 1 "Trust/don't trust" boolean. Trust the answer if the
*              reciprocal condition number is less than the threshold
*              sqrt(n) * slamch('Epsilon').
*
*     err = 2 "Guaranteed" error bound: The estimated forward error,
*              almost certainly within a factor of 10 of the true error
*              so long as the next entry is greater than the threshold
*              sqrt(n) * slamch('Epsilon'). This error bound should only
*              be trusted if the previous boolean is true.
*
*     err = 3  Reciprocal condition number: Estimated componentwise
*              reciprocal condition number.  Compared with the threshold
*              sqrt(n) * slamch('Epsilon') to determine if the error
*              estimate is "guaranteed". These reciprocal condition
*              numbers are 1 / (norm(Z^{-1},inf) * norm(Z,inf)) for some
*              appropriately scaled matrix Z.
*              Let Z = S*(A*diag(x)), where x is the solution for the
*              current right-hand side and S scales each row of
*              A*diag(x) by a power of the radix so all absolute row
*              sums of Z are approximately 1.
*
*     See Lapack Working Note 165 for further details and extra
*     cautions.
*
*     NPARAMS (input) INTEGER
*     Specifies the number of parameters set in PARAMS.  If .LE. 0, the
*     PARAMS array is never referenced and default values are used.
*
*     PARAMS  (input / output) REAL array, dimension NPARAMS
*     Specifies algorithm parameters.  If an entry is .LT. 0.0, then
*     that entry will be filled with default value used for that
*     parameter.  Only positions up to NPARAMS are accessed; defaults
*     are used for higher-numbered parameters.
*
*       PARAMS(LA_LINRX_ITREF_I = 1) : Whether to perform iterative
*            refinement or not.
*         Default: 1.0
*            = 0.0 : No refinement is performed, and no error bounds are
*                    computed.
*            = 1.0 : Use the double-precision refinement algorithm,
*                    possibly with doubled-single computations if the
*                    compilation environment does not support DOUBLE
*                    PRECISION.
*              (other values are reserved for future use)
*
*       PARAMS(LA_LINRX_ITHRESH_I = 2) : Maximum number of residual
*            computations allowed for refinement.
*         Default: 10
*         Aggressive: Set to 100 to permit convergence using approximate
*                     factorizations or factorizations other than LU. If
*                     the factorization uses a technique other than
*                     Gaussian elimination, the guarantees in
*                     err_bnds_norm and err_bnds_comp may no longer be
*                     trustworthy.
*
*       PARAMS(LA_LINRX_CWISE_I = 3) : Flag determining if the code
*            will attempt to find a solution with small componentwise
*            relative error in the double-precision algorithm.  Positive
*            is true, 0.0 is false.
*         Default: 1.0 (attempt componentwise convergence)
*
*     WORK    (workspace) COMPLEX array, dimension (2*N)
*
*     RWORK   (workspace) REAL array, dimension (2*N)
*
*     INFO    (output) INTEGER
*       = 0:  Successful exit. The solution to every right-hand side is
*         guaranteed.
*       < 0:  If INFO = -i, the i-th argument had an illegal value
*       > 0 and <= N:  U(INFO,INFO) is exactly zero.  The factorization
*         has been completed, but the factor U is exactly singular, so
*         the solution and error bounds could not be computed. RCOND = 0
*         is returned.
*       = N+J: The solution corresponding to the Jth right-hand side is
*         not guaranteed. The solutions corresponding to other right-
*         hand sides K with K > J may not be guaranteed as well, but
*         only the first such right-hand side is reported. If a small
*         componentwise error is not requested (PARAMS(3) = 0.0) then
*         the Jth right-hand side is the first with a normwise error
*         bound that is not guaranteed (the smallest J such
*         that ERR_BNDS_NORM(J,1) = 0.0). By default (PARAMS(3) = 1.0)
*         the Jth right-hand side is the first with either a normwise or
*         componentwise error bound that is not guaranteed (the smallest
*         J such that either ERR_BNDS_NORM(J,1) = 0.0 or
*         ERR_BNDS_COMP(J,1) = 0.0). See the definition of
*         ERR_BNDS_NORM(:,1) and ERR_BNDS_COMP(:,1). To get information
*         about all of the right-hand sides check ERR_BNDS_NORM or
*         ERR_BNDS_COMP.
*
*     ==================================================================
*
*     .. Parameters ..
      REAL               ZERO, ONE
      PARAMETER          ( ZERO = 0.0E+0, ONE = 1.0E+0 )
      INTEGER            FINAL_NRM_ERR_I, FINAL_CMP_ERR_I, BERR_I
      INTEGER            RCOND_I, NRM_RCOND_I, NRM_ERR_I, CMP_RCOND_I
      INTEGER            CMP_ERR_I, PIV_GROWTH_I
      PARAMETER          ( FINAL_NRM_ERR_I = 1, FINAL_CMP_ERR_I = 2,
     $                   BERR_I = 3 )
      PARAMETER          ( RCOND_I = 4, NRM_RCOND_I = 5, NRM_ERR_I = 6 )
      PARAMETER          ( CMP_RCOND_I = 7, CMP_ERR_I = 8,
     $                   PIV_GROWTH_I = 9 )
*     ..
*     .. Local Scalars ..
      LOGICAL            COLEQU, EQUIL, NOFACT, NOTRAN, ROWEQU
      INTEGER            INFEQU, I, J, KL, KU
      REAL               AMAX, BIGNUM, COLCND, RCMAX, RCMIN,
     $                   ROWCND, SMLNUM
*     ..
*     .. External Functions ..
      EXTERNAL           LSAME, SLAMCH, CLA_GBRPVGRW
      LOGICAL            LSAME
      REAL               SLAMCH, CLA_GBRPVGRW
*     ..
*     .. External Subroutines ..
      EXTERNAL           CGBEQUB, CGBTRF, CGBTRS, CLACPY, CLAQGB,
     $                   XERBLA, CLASCL2, CGBRFSX
*     ..
*     .. Intrinsic Functions ..
      INTRINSIC          MAXMIN
*     ..
*     .. Executable Statements ..
*
      INFO = 0
      NOFACT = LSAME( FACT, 'N' )
      EQUIL = LSAME( FACT, 'E' )
      NOTRAN = LSAME( TRANS, 'N' )
      SMLNUM = SLAMCH( 'Safe minimum' )
      BIGNUM = ONE / SMLNUM
      IF( NOFACT .OR. EQUIL ) THEN
         EQUED = 'N'
         ROWEQU = .FALSE.
         COLEQU = .FALSE.
      ELSE
         ROWEQU = LSAME( EQUED, 'R' ) .OR. LSAME( EQUED, 'B' )
         COLEQU = LSAME( EQUED, 'C' ) .OR. LSAME( EQUED, 'B' )
      END IF
*
*     Default is failure.  If an input parameter is wrong or
*     factorization fails, make everything look horrible.  Only the
*     pivot growth is set here, the rest is initialized in CGBRFSX.
*
      RPVGRW = ZERO
*
*     Test the input parameters.  PARAMS is not tested until SGERFSX.
*
      IF.NOT.NOFACT .AND. .NOT.EQUIL .AND. .NOT.
     $     LSAME( FACT, 'F' ) ) THEN
         INFO = -1
      ELSE IF.NOT.NOTRAN .AND. .NOT.LSAME( TRANS, 'T' ) .AND. .NOT.
     $        LSAME( TRANS, 'C' ) ) THEN
         INFO = -2
      ELSE IF( N.LT.0 ) THEN
         INFO = -3
      ELSE IF( KL.LT.0 ) THEN
         INFO = -4
      ELSE IF( KU.LT.0 ) THEN
         INFO = -5
      ELSE IF( NRHS.LT.0 ) THEN
         INFO = -6
      ELSE IF( LDAB.LT.KL+KU+1 ) THEN
         INFO = -8
      ELSE IF( LDAFB.LT.2*KL+KU+1 ) THEN
         INFO = -10
      ELSE IF( LSAME( FACT, 'F' ) .AND. .NOT.
     $        ( ROWEQU .OR. COLEQU .OR. LSAME( EQUED, 'N' ) ) ) THEN
         INFO = -12
      ELSE
         IF( ROWEQU ) THEN
            RCMIN = BIGNUM
            RCMAX = ZERO
            DO 10 J = 1, N
               RCMIN = MIN( RCMIN, R( J ) )
               RCMAX = MAX( RCMAX, R( J ) )
 10         CONTINUE
            IF( RCMIN.LE.ZERO ) THEN
               INFO = -13
            ELSE IF( N.GT.0 ) THEN
               ROWCND = MAX( RCMIN, SMLNUM ) / MIN( RCMAX, BIGNUM )
            ELSE
               ROWCND = ONE
            END IF
         END IF
         IF( COLEQU .AND. INFO.EQ.0 ) THEN
            RCMIN = BIGNUM
            RCMAX = ZERO
            DO 20 J = 1, N
               RCMIN = MIN( RCMIN, C( J ) )
               RCMAX = MAX( RCMAX, C( J ) )
 20         CONTINUE
            IF( RCMIN.LE.ZERO ) THEN
               INFO = -14
            ELSE IF( N.GT.0 ) THEN
               COLCND = MAX( RCMIN, SMLNUM ) / MIN( RCMAX, BIGNUM )
            ELSE
               COLCND = ONE
            END IF
         END IF
         IF( INFO.EQ.0 ) THEN
            IF( LDB.LT.MAX1, N ) ) THEN
               INFO = -15
            ELSE IF( LDX.LT.MAX1, N ) ) THEN
               INFO = -16
            END IF
         END IF
      END IF
*
      IF( INFO.NE.0 ) THEN
         CALL XERBLA( 'CGBSVXX'-INFO )
         RETURN
      END IF
*
      IF( EQUIL ) THEN
*
*     Compute row and column scalings to equilibrate the matrix A.
*
         CALL CGBEQUB( N, N, KL, KU, AB, LDAB, R, C, ROWCND, COLCND,
     $        AMAX, INFEQU )
         IF( INFEQU.EQ.0 ) THEN
*
*     Equilibrate the matrix.
*
            CALL CLAQGB( N, N, KL, KU, AB, LDAB, R, C, ROWCND, COLCND,
     $           AMAX, EQUED )
            ROWEQU = LSAME( EQUED, 'R' ) .OR. LSAME( EQUED, 'B' )
            COLEQU = LSAME( EQUED, 'C' ) .OR. LSAME( EQUED, 'B' )
         END IF
*
*     If the scaling factors are not applied, set them to 1.0.
*
         IF ( .NOT.ROWEQU ) THEN
            DO J = 1, N
               R( J ) = 1.0
            END DO
         END IF
         IF ( .NOT.COLEQU ) THEN
            DO J = 1, N
               C( J ) = 1.0
            END DO
         END IF
      END IF
*
*     Scale the right-hand side.
*
      IF( NOTRAN ) THEN
         IF( ROWEQU ) CALL CLASCL2( N, NRHS, R, B, LDB )
      ELSE
         IF( COLEQU ) CALL CLASCL2( N, NRHS, C, B, LDB )
      END IF
*
      IF( NOFACT .OR. EQUIL ) THEN
*
*        Compute the LU factorization of A.
*
         DO 40, J = 1, N
            DO 30, I = KL+12*KL+KU+1
               AFB( I, J ) = AB( I-KL, J )
 30         CONTINUE
 40      CONTINUE
         CALL CGBTRF( N, N, KL, KU, AFB, LDAFB, IPIV, INFO )
*
*        Return if INFO is non-zero.
*
         IF( INFO.GT.0 ) THEN
*
*           Pivot in column INFO is exactly 0
*           Compute the reciprocal pivot growth factor of the
*           leading rank-deficient INFO columns of A.
*
            RPVGRW = CLA_GBRPVGRW( N, KL, KU, INFO, AB, LDAB, AFB,
     $           LDAFB )
            RETURN
         END IF
      END IF
*
*     Compute the reciprocal pivot growth factor RPVGRW.
*
      RPVGRW = CLA_GBRPVGRW( N, KL, KU, N, AB, LDAB, AFB, LDAFB )
*
*     Compute the solution matrix X.
*
      CALL CLACPY( 'Full', N, NRHS, B, LDB, X, LDX )
      CALL CGBTRS( TRANS, N, KL, KU, NRHS, AFB, LDAFB, IPIV, X, LDX,
     $     INFO )
*
*     Use iterative refinement to improve the computed solution and
*     compute error bounds and backward error estimates for it.
*
      CALL CGBRFSX( TRANS, EQUED, N, KL, KU, NRHS, AB, LDAB, AFB, LDAFB,
     $     IPIV, R, C, B, LDB, X, LDX, RCOND, BERR,
     $     N_ERR_BNDS, ERR_BNDS_NORM, ERR_BNDS_COMP, NPARAMS, PARAMS,
     $     WORK, RWORK, INFO )

*
*     Scale solutions.
*
      IF ( COLEQU .AND. NOTRAN ) THEN
         CALL CLASCL2( N, NRHS, C, X, LDX )
      ELSE IF ( ROWEQU .AND. .NOT.NOTRAN ) THEN
         CALL CLASCL2( N, NRHS, R, X, LDX )
      END IF
*
      RETURN
*
*     End of CGBSVXX
*
      END