1
       2
       3
       4
       5
       6
       7
       8
       9
      10
      11
      12
      13
      14
      15
      16
      17
      18
      19
      20
      21
      22
      23
      24
      25
      26
      27
      28
      29
      30
      31
      32
      33
      34
      35
      36
      37
      38
      39
      40
      41
      42
      43
      44
      45
      46
      47
      48
      49
      50
      51
      52
      53
      54
      55
      56
      57
      58
      59
      60
      61
      62
      63
      64
      65
      66
      67
      68
      69
      70
      71
      72
      73
      74
      75
      76
      77
      78
      79
      80
      81
      82
      83
      84
      85
      86
      87
      88
      89
      90
      91
      92
      93
      94
      95
      96
      97
      98
      99
     100
     101
     102
     103
     104
     105
     106
     107
     108
     109
     110
     111
     112
     113
     114
     115
     116
     117
     118
     119
     120
     121
     122
     123
     124
     125
     126
     127
     128
     129
     130
     131
     132
     133
     134
     135
     136
     137
     138
     139
     140
     141
     142
     143
     144
     145
     146
     147
     148
     149
     150
     151
     152
     153
     154
     155
     156
     157
     158
     159
     160
     161
     162
     163
     164
     165
     166
     167
     168
     169
     170
     171
     172
     173
     174
     175
     176
     177
     178
     179
     180
     181
     182
     183
     184
     185
     186
     187
     188
     189
     190
     191
     192
     193
     194
     195
     196
     197
     198
     199
     200
     201
     202
     203
     204
     205
     206
     207
     208
     209
     210
     211
     212
     213
     214
     215
     216
     217
     218
     219
     220
     221
     222
     223
     224
     225
     226
     227
     228
     229
     230
     231
     232
     233
     234
     235
     236
     237
     238
     239
     240
     241
     242
     243
     244
     245
     246
     247
     248
     249
     250
     251
      SUBROUTINE CGEBD2( M, N, A, LDA, D, E, TAUQ, TAUP, WORK, INFO )
*
*  -- LAPACK routine (version 3.3.1) --
*  -- LAPACK is a software package provided by Univ. of Tennessee,    --
*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
*  -- April 2011                                                      --
*
*     .. Scalar Arguments ..
      INTEGER            INFO, LDA, M, N
*     ..
*     .. Array Arguments ..
      REAL               D( * ), E( * )
      COMPLEX            A( LDA, * ), TAUP( * ), TAUQ( * ), WORK( * )
*     ..
*
*  Purpose
*  =======
*
*  CGEBD2 reduces a complex general m by n matrix A to upper or lower
*  real bidiagonal form B by a unitary transformation: Q**H * A * P = B.
*
*  If m >= n, B is upper bidiagonal; if m < n, B is lower bidiagonal.
*
*  Arguments
*  =========
*
*  M       (input) INTEGER
*          The number of rows in the matrix A.  M >= 0.
*
*  N       (input) INTEGER
*          The number of columns in the matrix A.  N >= 0.
*
*  A       (input/output) COMPLEX array, dimension (LDA,N)
*          On entry, the m by n general matrix to be reduced.
*          On exit,
*          if m >= n, the diagonal and the first superdiagonal are
*            overwritten with the upper bidiagonal matrix B; the
*            elements below the diagonal, with the array TAUQ, represent
*            the unitary matrix Q as a product of elementary
*            reflectors, and the elements above the first superdiagonal,
*            with the array TAUP, represent the unitary matrix P as
*            a product of elementary reflectors;
*          if m < n, the diagonal and the first subdiagonal are
*            overwritten with the lower bidiagonal matrix B; the
*            elements below the first subdiagonal, with the array TAUQ,
*            represent the unitary matrix Q as a product of
*            elementary reflectors, and the elements above the diagonal,
*            with the array TAUP, represent the unitary matrix P as
*            a product of elementary reflectors.
*          See Further Details.
*
*  LDA     (input) INTEGER
*          The leading dimension of the array A.  LDA >= max(1,M).
*
*  D       (output) REAL array, dimension (min(M,N))
*          The diagonal elements of the bidiagonal matrix B:
*          D(i) = A(i,i).
*
*  E       (output) REAL array, dimension (min(M,N)-1)
*          The off-diagonal elements of the bidiagonal matrix B:
*          if m >= n, E(i) = A(i,i+1) for i = 1,2,...,n-1;
*          if m < n, E(i) = A(i+1,i) for i = 1,2,...,m-1.
*
*  TAUQ    (output) COMPLEX array dimension (min(M,N))
*          The scalar factors of the elementary reflectors which
*          represent the unitary matrix Q. See Further Details.
*
*  TAUP    (output) COMPLEX array, dimension (min(M,N))
*          The scalar factors of the elementary reflectors which
*          represent the unitary matrix P. See Further Details.
*
*  WORK    (workspace) COMPLEX array, dimension (max(M,N))
*
*  INFO    (output) INTEGER
*          = 0: successful exit 
*          < 0: if INFO = -i, the i-th argument had an illegal value.
*
*  Further Details
*  ===============
*
*  The matrices Q and P are represented as products of elementary
*  reflectors:
*
*  If m >= n,
*
*     Q = H(1) H(2) . . . H(n)  and  P = G(1) G(2) . . . G(n-1)
*
*  Each H(i) and G(i) has the form:
*
*     H(i) = I - tauq * v * v**H  and G(i) = I - taup * u * u**H
*
*  where tauq and taup are complex scalars, and v and u are complex
*  vectors; v(1:i-1) = 0, v(i) = 1, and v(i+1:m) is stored on exit in
*  A(i+1:m,i); u(1:i) = 0, u(i+1) = 1, and u(i+2:n) is stored on exit in
*  A(i,i+2:n); tauq is stored in TAUQ(i) and taup in TAUP(i).
*
*  If m < n,
*
*     Q = H(1) H(2) . . . H(m-1)  and  P = G(1) G(2) . . . G(m)
*
*  Each H(i) and G(i) has the form:
*
*     H(i) = I - tauq * v * v**H  and G(i) = I - taup * u * u**H
*
*  where tauq and taup are complex scalars, v and u are complex vectors;
*  v(1:i) = 0, v(i+1) = 1, and v(i+2:m) is stored on exit in A(i+2:m,i);
*  u(1:i-1) = 0, u(i) = 1, and u(i+1:n) is stored on exit in A(i,i+1:n);
*  tauq is stored in TAUQ(i) and taup in TAUP(i).
*
*  The contents of A on exit are illustrated by the following examples:
*
*  m = 6 and n = 5 (m > n):          m = 5 and n = 6 (m < n):
*
*    (  d   e   u1  u1  u1 )           (  d   u1  u1  u1  u1  u1 )
*    (  v1  d   e   u2  u2 )           (  e   d   u2  u2  u2  u2 )
*    (  v1  v2  d   e   u3 )           (  v1  e   d   u3  u3  u3 )
*    (  v1  v2  v3  d   e  )           (  v1  v2  e   d   u4  u4 )
*    (  v1  v2  v3  v4  d  )           (  v1  v2  v3  e   d   u5 )
*    (  v1  v2  v3  v4  v5 )
*
*  where d and e denote diagonal and off-diagonal elements of B, vi
*  denotes an element of the vector defining H(i), and ui an element of
*  the vector defining G(i).
*
*  =====================================================================
*
*     .. Parameters ..
      COMPLEX            ZERO, ONE
      PARAMETER          ( ZERO = ( 0.0E+00.0E+0 ),
     $                   ONE = ( 1.0E+00.0E+0 ) )
*     ..
*     .. Local Scalars ..
      INTEGER            I
      COMPLEX            ALPHA
*     ..
*     .. External Subroutines ..
      EXTERNAL           CLACGV, CLARF, CLARFG, XERBLA
*     ..
*     .. Intrinsic Functions ..
      INTRINSIC          CONJGMAXMIN
*     ..
*     .. Executable Statements ..
*
*     Test the input parameters
*
      INFO = 0
      IF( M.LT.0 ) THEN
         INFO = -1
      ELSE IF( N.LT.0 ) THEN
         INFO = -2
      ELSE IF( LDA.LT.MAX1, M ) ) THEN
         INFO = -4
      END IF
      IF( INFO.LT.0 ) THEN
         CALL XERBLA( 'CGEBD2'-INFO )
         RETURN
      END IF
*
      IF( M.GE.N ) THEN
*
*        Reduce to upper bidiagonal form
*
         DO 10 I = 1, N
*
*           Generate elementary reflector H(i) to annihilate A(i+1:m,i)
*
            ALPHA = A( I, I )
            CALL CLARFG( M-I+1, ALPHA, A( MIN( I+1, M ), I ), 1,
     $                   TAUQ( I ) )
            D( I ) = ALPHA
            A( I, I ) = ONE
*
*           Apply H(i)**H to A(i:m,i+1:n) from the left
*
            IF( I.LT.N )
     $         CALL CLARF( 'Left', M-I+1, N-I, A( I, I ), 1,
     $                     CONJG( TAUQ( I ) ), A( I, I+1 ), LDA, WORK )
            A( I, I ) = D( I )
*
            IF( I.LT.N ) THEN
*
*              Generate elementary reflector G(i) to annihilate
*              A(i,i+2:n)
*
               CALL CLACGV( N-I, A( I, I+1 ), LDA )
               ALPHA = A( I, I+1 )
               CALL CLARFG( N-I, ALPHA, A( I, MIN( I+2, N ) ),
     $                      LDA, TAUP( I ) )
               E( I ) = ALPHA
               A( I, I+1 ) = ONE
*
*              Apply G(i) to A(i+1:m,i+1:n) from the right
*
               CALL CLARF( 'Right', M-I, N-I, A( I, I+1 ), LDA,
     $                     TAUP( I ), A( I+1, I+1 ), LDA, WORK )
               CALL CLACGV( N-I, A( I, I+1 ), LDA )
               A( I, I+1 ) = E( I )
            ELSE
               TAUP( I ) = ZERO
            END IF
   10    CONTINUE
      ELSE
*
*        Reduce to lower bidiagonal form
*
         DO 20 I = 1, M
*
*           Generate elementary reflector G(i) to annihilate A(i,i+1:n)
*
            CALL CLACGV( N-I+1, A( I, I ), LDA )
            ALPHA = A( I, I )
            CALL CLARFG( N-I+1, ALPHA, A( I, MIN( I+1, N ) ), LDA,
     $                   TAUP( I ) )
            D( I ) = ALPHA
            A( I, I ) = ONE
*
*           Apply G(i) to A(i+1:m,i:n) from the right
*
            IF( I.LT.M )
     $         CALL CLARF( 'Right', M-I, N-I+1, A( I, I ), LDA,
     $                     TAUP( I ), A( I+1, I ), LDA, WORK )
            CALL CLACGV( N-I+1, A( I, I ), LDA )
            A( I, I ) = D( I )
*
            IF( I.LT.M ) THEN
*
*              Generate elementary reflector H(i) to annihilate
*              A(i+2:m,i)
*
               ALPHA = A( I+1, I )
               CALL CLARFG( M-I, ALPHA, A( MIN( I+2, M ), I ), 1,
     $                      TAUQ( I ) )
               E( I ) = ALPHA
               A( I+1, I ) = ONE
*
*              Apply H(i)**H to A(i+1:m,i+1:n) from the left
*
               CALL CLARF( 'Left', M-I, N-I, A( I+1, I ), 1,
     $                     CONJG( TAUQ( I ) ), A( I+1, I+1 ), LDA,
     $                     WORK )
               A( I+1, I ) = E( I )
            ELSE
               TAUQ( I ) = ZERO
            END IF
   20    CONTINUE
      END IF
      RETURN
*
*     End of CGEBD2
*
      END