1
       2
       3
       4
       5
       6
       7
       8
       9
      10
      11
      12
      13
      14
      15
      16
      17
      18
      19
      20
      21
      22
      23
      24
      25
      26
      27
      28
      29
      30
      31
      32
      33
      34
      35
      36
      37
      38
      39
      40
      41
      42
      43
      44
      45
      46
      47
      48
      49
      50
      51
      52
      53
      54
      55
      56
      57
      58
      59
      60
      61
      62
      63
      64
      65
      66
      67
      68
      69
      70
      71
      72
      73
      74
      75
      76
      77
      78
      79
      80
      81
      82
      83
      84
      85
      86
      87
      88
      89
      90
      91
      92
      93
      94
      95
      96
      97
      98
      99
     100
     101
     102
     103
     104
     105
     106
     107
     108
     109
     110
     111
     112
     113
     114
     115
     116
     117
     118
     119
     120
     121
     122
     123
     124
     125
     126
     127
     128
     129
     130
     131
     132
     133
     134
     135
     136
     137
     138
     139
     140
     141
     142
     143
     144
     145
     146
     147
     148
     149
     150
     151
     152
     153
     154
     155
     156
     157
     158
     159
     160
     161
     162
     163
     164
     165
     166
     167
     168
     169
     170
     171
     172
     173
     174
     175
     176
     177
     178
     179
     180
     181
     182
     183
     184
     185
     186
     187
     188
     189
     190
     191
     192
     193
     194
     195
     196
     197
     198
     199
     200
     201
     202
     203
     204
     205
     206
     207
     208
     209
     210
     211
     212
     213
     214
     215
     216
     217
     218
     219
     220
     221
     222
     223
     224
     225
     226
     227
     228
     229
     230
     231
     232
     233
     234
     235
     236
     237
     238
     239
     240
     241
     242
     243
     244
     245
     246
     247
     248
     249
     250
     251
     252
     253
     254
     255
     256
     257
     258
     259
     260
     261
     262
     263
     264
     265
     266
     267
     268
     269
     270
     271
     272
     273
     274
     275
     276
     277
     278
     279
     280
     281
     282
     283
     284
     285
     286
     287
     288
     289
     290
     291
     292
     293
     294
     295
     296
     297
     298
     299
     300
     301
     302
     303
     304
     305
     306
     307
     308
     309
     310
     311
     312
     313
     314
     315
     316
     317
     318
     319
     320
     321
     322
     323
     324
     325
     326
     327
     328
     329
     330
     331
     332
     333
     334
     335
     336
     337
     338
     339
     340
     341
     342
     343
     344
     345
     346
     347
     348
     349
     350
     351
     352
     353
     354
     355
     356
     357
     358
     359
     360
     361
     362
     363
     364
     365
     366
     367
     368
     369
     370
     371
     372
     373
     374
     375
     376
     377
     378
     379
     380
     381
     382
     383
     384
     385
     386
     387
     388
     389
      SUBROUTINE CGEESX( JOBVS, SORT, SELECT, SENSE, N, A, LDA, SDIM, W,
     $                   VS, LDVS, RCONDE, RCONDV, WORK, LWORK, RWORK,
     $                   BWORK, INFO )
*
*  -- LAPACK driver routine (version 3.2.2) --
*  -- LAPACK is a software package provided by Univ. of Tennessee,    --
*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
*     June 2010
*
*     .. Scalar Arguments ..
      CHARACTER          JOBVS, SENSE, SORT
      INTEGER            INFO, LDA, LDVS, LWORK, N, SDIM
      REAL               RCONDE, RCONDV
*     ..
*     .. Array Arguments ..
      LOGICAL            BWORK( * )
      REAL               RWORK( * )
      COMPLEX            A( LDA, * ), VS( LDVS, * ), W( * ), WORK( * )
*     ..
*     .. Function Arguments ..
      LOGICAL            SELECT
      EXTERNAL           SELECT
*     ..
*
*  Purpose
*  =======
*
*  CGEESX computes for an N-by-N complex nonsymmetric matrix A, the
*  eigenvalues, the Schur form T, and, optionally, the matrix of Schur
*  vectors Z.  This gives the Schur factorization A = Z*T*(Z**H).
*
*  Optionally, it also orders the eigenvalues on the diagonal of the
*  Schur form so that selected eigenvalues are at the top left;
*  computes a reciprocal condition number for the average of the
*  selected eigenvalues (RCONDE); and computes a reciprocal condition
*  number for the right invariant subspace corresponding to the
*  selected eigenvalues (RCONDV).  The leading columns of Z form an
*  orthonormal basis for this invariant subspace.
*
*  For further explanation of the reciprocal condition numbers RCONDE
*  and RCONDV, see Section 4.10 of the LAPACK Users' Guide (where
*  these quantities are called s and sep respectively).
*
*  A complex matrix is in Schur form if it is upper triangular.
*
*  Arguments
*  =========
*
*  JOBVS   (input) CHARACTER*1
*          = 'N': Schur vectors are not computed;
*          = 'V': Schur vectors are computed.
*
*  SORT    (input) CHARACTER*1
*          Specifies whether or not to order the eigenvalues on the
*          diagonal of the Schur form.
*          = 'N': Eigenvalues are not ordered;
*          = 'S': Eigenvalues are ordered (see SELECT).
*
*  SELECT  (external procedure) LOGICAL FUNCTION of one COMPLEX argument
*          SELECT must be declared EXTERNAL in the calling subroutine.
*          If SORT = 'S', SELECT is used to select eigenvalues to order
*          to the top left of the Schur form.
*          If SORT = 'N', SELECT is not referenced.
*          An eigenvalue W(j) is selected if SELECT(W(j)) is true.
*
*  SENSE   (input) CHARACTER*1
*          Determines which reciprocal condition numbers are computed.
*          = 'N': None are computed;
*          = 'E': Computed for average of selected eigenvalues only;
*          = 'V': Computed for selected right invariant subspace only;
*          = 'B': Computed for both.
*          If SENSE = 'E', 'V' or 'B', SORT must equal 'S'.
*
*  N       (input) INTEGER
*          The order of the matrix A. N >= 0.
*
*  A       (input/output) COMPLEX array, dimension (LDA, N)
*          On entry, the N-by-N matrix A.
*          On exit, A is overwritten by its Schur form T.
*
*  LDA     (input) INTEGER
*          The leading dimension of the array A.  LDA >= max(1,N).
*
*  SDIM    (output) INTEGER
*          If SORT = 'N', SDIM = 0.
*          If SORT = 'S', SDIM = number of eigenvalues for which
*                         SELECT is true.
*
*  W       (output) COMPLEX array, dimension (N)
*          W contains the computed eigenvalues, in the same order
*          that they appear on the diagonal of the output Schur form T.
*
*  VS      (output) COMPLEX array, dimension (LDVS,N)
*          If JOBVS = 'V', VS contains the unitary matrix Z of Schur
*          vectors.
*          If JOBVS = 'N', VS is not referenced.
*
*  LDVS    (input) INTEGER
*          The leading dimension of the array VS.  LDVS >= 1, and if
*          JOBVS = 'V', LDVS >= N.
*
*  RCONDE  (output) REAL
*          If SENSE = 'E' or 'B', RCONDE contains the reciprocal
*          condition number for the average of the selected eigenvalues.
*          Not referenced if SENSE = 'N' or 'V'.
*
*  RCONDV  (output) REAL
*          If SENSE = 'V' or 'B', RCONDV contains the reciprocal
*          condition number for the selected right invariant subspace.
*          Not referenced if SENSE = 'N' or 'E'.
*
*  WORK    (workspace/output) COMPLEX array, dimension (MAX(1,LWORK))
*          On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
*
*  LWORK   (input) INTEGER
*          The dimension of the array WORK.  LWORK >= max(1,2*N).
*          Also, if SENSE = 'E' or 'V' or 'B', LWORK >= 2*SDIM*(N-SDIM),
*          where SDIM is the number of selected eigenvalues computed by
*          this routine.  Note that 2*SDIM*(N-SDIM) <= N*N/2. Note also
*          that an error is only returned if LWORK < max(1,2*N), but if
*          SENSE = 'E' or 'V' or 'B' this may not be large enough.
*          For good performance, LWORK must generally be larger.
*
*          If LWORK = -1, then a workspace query is assumed; the routine
*          only calculates upper bound on the optimal size of the
*          array WORK, returns this value as the first entry of the WORK
*          array, and no error message related to LWORK is issued by
*          XERBLA.
*
*  RWORK   (workspace) REAL array, dimension (N)
*
*  BWORK   (workspace) LOGICAL array, dimension (N)
*          Not referenced if SORT = 'N'.
*
*  INFO    (output) INTEGER
*          = 0: successful exit
*          < 0: if INFO = -i, the i-th argument had an illegal value.
*          > 0: if INFO = i, and i is
*             <= N: the QR algorithm failed to compute all the
*                   eigenvalues; elements 1:ILO-1 and i+1:N of W
*                   contain those eigenvalues which have converged; if
*                   JOBVS = 'V', VS contains the transformation which
*                   reduces A to its partially converged Schur form.
*             = N+1: the eigenvalues could not be reordered because some
*                   eigenvalues were too close to separate (the problem
*                   is very ill-conditioned);
*             = N+2: after reordering, roundoff changed values of some
*                   complex eigenvalues so that leading eigenvalues in
*                   the Schur form no longer satisfy SELECT=.TRUE.  This
*                   could also be caused by underflow due to scaling.
*
*  =====================================================================
*
*     .. Parameters ..
      REAL               ZERO, ONE
      PARAMETER          ( ZERO = 0.0E0, ONE = 1.0E0 )
*     ..
*     .. Local Scalars ..
      LOGICAL            LQUERY, SCALEA, WANTSB, WANTSE, WANTSN, WANTST,
     $                   WANTSV, WANTVS
      INTEGER            HSWORK, I, IBAL, ICOND, IERR, IEVAL, IHI, ILO,
     $                   ITAU, IWRK, LWRK, MAXWRK, MINWRK
      REAL               ANRM, BIGNUM, CSCALE, EPS, SMLNUM
*     ..
*     .. Local Arrays ..
      REAL               DUM( 1 )
*     ..
*     .. External Subroutines ..
      EXTERNAL           CCOPY, CGEBAK, CGEBAL, CGEHRD, CHSEQR, CLACPY,
     $                   CLASCL, CTRSEN, CUNGHR, SLABAD, SLASCL, XERBLA
*     ..
*     .. External Functions ..
      LOGICAL            LSAME
      INTEGER            ILAENV
      REAL               CLANGE, SLAMCH
      EXTERNAL           LSAME, ILAENV, CLANGE, SLAMCH
*     ..
*     .. Intrinsic Functions ..
      INTRINSIC          MAXSQRT
*     ..
*     .. Executable Statements ..
*
*     Test the input arguments
*
      INFO = 0
      WANTVS = LSAME( JOBVS, 'V' )
      WANTST = LSAME( SORT, 'S' )
      WANTSN = LSAME( SENSE, 'N' )
      WANTSE = LSAME( SENSE, 'E' )
      WANTSV = LSAME( SENSE, 'V' )
      WANTSB = LSAME( SENSE, 'B' )
      LQUERY = ( LWORK.EQ.-1 )
*
      IF( ( .NOT.WANTVS ) .AND. ( .NOT.LSAME( JOBVS, 'N' ) ) ) THEN
         INFO = -1
      ELSE IF( ( .NOT.WANTST ) .AND. ( .NOT.LSAME( SORT, 'N' ) ) ) THEN
         INFO = -2
      ELSE IF.NOT.( WANTSN .OR. WANTSE .OR. WANTSV .OR. WANTSB ) .OR.
     $         ( .NOT.WANTST .AND. .NOT.WANTSN ) ) THEN
         INFO = -4
      ELSE IF( N.LT.0 ) THEN
         INFO = -5
      ELSE IF( LDA.LT.MAX1, N ) ) THEN
         INFO = -7
      ELSE IF( LDVS.LT.1 .OR. ( WANTVS .AND. LDVS.LT.N ) ) THEN
         INFO = -11
      END IF
*
*     Compute workspace
*      (Note: Comments in the code beginning "Workspace:" describe the
*       minimal amount of real workspace needed at that point in the
*       code, as well as the preferred amount for good performance.
*       CWorkspace refers to complex workspace, and RWorkspace to real
*       workspace. NB refers to the optimal block size for the
*       immediately following subroutine, as returned by ILAENV.
*       HSWORK refers to the workspace preferred by CHSEQR, as
*       calculated below. HSWORK is computed assuming ILO=1 and IHI=N,
*       the worst case.
*       If SENSE = 'E', 'V' or 'B', then the amount of workspace needed
*       depends on SDIM, which is computed by the routine CTRSEN later
*       in the code.)
*
      IF( INFO.EQ.0 ) THEN
         IF( N.EQ.0 ) THEN
            MINWRK = 1
            LWRK = 1
         ELSE
            MAXWRK = N + N*ILAENV( 1'CGEHRD'' ', N, 1, N, 0 )
            MINWRK = 2*N
*
            CALL CHSEQR( 'S', JOBVS, N, 1, N, A, LDA, W, VS, LDVS,
     $             WORK, -1, IEVAL )
            HSWORK = WORK( 1 )
*
            IF.NOT.WANTVS ) THEN
               MAXWRK = MAX( MAXWRK, HSWORK )
            ELSE
               MAXWRK = MAX( MAXWRK, N + ( N - 1 )*ILAENV( 1'CUNGHR',
     $                       ' ', N, 1, N, -1 ) )
               MAXWRK = MAX( MAXWRK, HSWORK )
            END IF
            LWRK = MAXWRK
            IF.NOT.WANTSN )
     $         LWRK = MAX( LWRK, ( N*N )/2 )
         END IF
         WORK( 1 ) = LWRK
*
         IF( LWORK.LT.MINWRK .AND. .NOT.LQUERY ) THEN
            INFO = -15
         END IF
      END IF
*
      IF( INFO.NE.0 ) THEN
         CALL XERBLA( 'CGEESX'-INFO )
         RETURN
      ELSE IF( LQUERY ) THEN
         RETURN
      END IF
*
*     Quick return if possible
*
      IF( N.EQ.0 ) THEN
         SDIM = 0
         RETURN
      END IF
*
*     Get machine constants
*
      EPS = SLAMCH( 'P' )
      SMLNUM = SLAMCH( 'S' )
      BIGNUM = ONE / SMLNUM
      CALL SLABAD( SMLNUM, BIGNUM )
      SMLNUM = SQRT( SMLNUM ) / EPS
      BIGNUM = ONE / SMLNUM
*
*     Scale A if max element outside range [SMLNUM,BIGNUM]
*
      ANRM = CLANGE( 'M', N, N, A, LDA, DUM )
      SCALEA = .FALSE.
      IF( ANRM.GT.ZERO .AND. ANRM.LT.SMLNUM ) THEN
         SCALEA = .TRUE.
         CSCALE = SMLNUM
      ELSE IF( ANRM.GT.BIGNUM ) THEN
         SCALEA = .TRUE.
         CSCALE = BIGNUM
      END IF
      IF( SCALEA )
     $   CALL CLASCL( 'G'00, ANRM, CSCALE, N, N, A, LDA, IERR )
*
*
*     Permute the matrix to make it more nearly triangular
*     (CWorkspace: none)
*     (RWorkspace: need N)
*
      IBAL = 1
      CALL CGEBAL( 'P', N, A, LDA, ILO, IHI, RWORK( IBAL ), IERR )
*
*     Reduce to upper Hessenberg form
*     (CWorkspace: need 2*N, prefer N+N*NB)
*     (RWorkspace: none)
*
      ITAU = 1
      IWRK = N + ITAU
      CALL CGEHRD( N, ILO, IHI, A, LDA, WORK( ITAU ), WORK( IWRK ),
     $             LWORK-IWRK+1, IERR )
*
      IF( WANTVS ) THEN
*
*        Copy Householder vectors to VS
*
         CALL CLACPY( 'L', N, N, A, LDA, VS, LDVS )
*
*        Generate unitary matrix in VS
*        (CWorkspace: need 2*N-1, prefer N+(N-1)*NB)
*        (RWorkspace: none)
*
         CALL CUNGHR( N, ILO, IHI, VS, LDVS, WORK( ITAU ), WORK( IWRK ),
     $                LWORK-IWRK+1, IERR )
      END IF
*
      SDIM = 0
*
*     Perform QR iteration, accumulating Schur vectors in VS if desired
*     (CWorkspace: need 1, prefer HSWORK (see comments) )
*     (RWorkspace: none)
*
      IWRK = ITAU
      CALL CHSEQR( 'S', JOBVS, N, ILO, IHI, A, LDA, W, VS, LDVS,
     $             WORK( IWRK ), LWORK-IWRK+1, IEVAL )
      IF( IEVAL.GT.0 )
     $   INFO = IEVAL
*
*     Sort eigenvalues if desired
*
      IF( WANTST .AND. INFO.EQ.0 ) THEN
         IF( SCALEA )
     $      CALL CLASCL( 'G'00, CSCALE, ANRM, N, 1, W, N, IERR )
         DO 10 I = 1, N
            BWORK( I ) = SELECT( W( I ) )
   10    CONTINUE
*
*        Reorder eigenvalues, transform Schur vectors, and compute
*        reciprocal condition numbers
*        (CWorkspace: if SENSE is not 'N', need 2*SDIM*(N-SDIM)
*                     otherwise, need none )
*        (RWorkspace: none)
*
         CALL CTRSEN( SENSE, JOBVS, BWORK, N, A, LDA, VS, LDVS, W, SDIM,
     $                RCONDE, RCONDV, WORK( IWRK ), LWORK-IWRK+1,
     $                ICOND )
         IF.NOT.WANTSN )
     $      MAXWRK = MAX( MAXWRK, 2*SDIM*( N-SDIM ) )
         IF( ICOND.EQ.-14 ) THEN
*
*           Not enough complex workspace
*
            INFO = -15
         END IF
      END IF
*
      IF( WANTVS ) THEN
*
*        Undo balancing
*        (CWorkspace: none)
*        (RWorkspace: need N)
*
         CALL CGEBAK( 'P''R', N, ILO, IHI, RWORK( IBAL ), N, VS, LDVS,
     $                IERR )
      END IF
*
      IF( SCALEA ) THEN
*
*        Undo scaling for the Schur form of A
*
         CALL CLASCL( 'U'00, CSCALE, ANRM, N, N, A, LDA, IERR )
         CALL CCOPY( N, A, LDA+1, W, 1 )
         IF( ( WANTSV .OR. WANTSB ) .AND. INFO.EQ.0 ) THEN
            DUM( 1 ) = RCONDV
            CALL SLASCL( 'G'00, CSCALE, ANRM, 11, DUM, 1, IERR )
            RCONDV = DUM( 1 )
         END IF
      END IF
*
      WORK( 1 ) = MAXWRK
      RETURN
*
*     End of CGEESX
*
      END