1
       2
       3
       4
       5
       6
       7
       8
       9
      10
      11
      12
      13
      14
      15
      16
      17
      18
      19
      20
      21
      22
      23
      24
      25
      26
      27
      28
      29
      30
      31
      32
      33
      34
      35
      36
      37
      38
      39
      40
      41
      42
      43
      44
      45
      46
      47
      48
      49
      50
      51
      52
      53
      54
      55
      56
      57
      58
      59
      60
      61
      62
      63
      64
      65
      66
      67
      68
      69
      70
      71
      72
      73
      74
      75
      76
      77
      78
      79
      80
      81
      82
      83
      84
      85
      86
      87
      88
      89
      90
      91
      92
      93
      94
      95
      96
      97
      98
      99
     100
     101
     102
     103
     104
     105
     106
     107
     108
     109
     110
     111
     112
     113
     114
     115
     116
     117
     118
     119
     120
     121
     122
     123
     124
     125
     126
     127
     128
     129
     130
     131
     132
     133
     134
     135
     136
     137
     138
     139
     140
     141
     142
     143
     144
     145
     146
     147
     148
     149
     150
     151
     152
     153
     154
     155
     156
     157
     158
     159
     160
     161
     162
     163
     164
     165
     166
     167
     168
     169
     170
     171
     172
     173
     174
     175
     176
     177
     178
     179
     180
     181
     182
     183
     184
     185
     186
     187
     188
     189
     190
     191
     192
     193
     194
     195
     196
     197
     198
     199
     200
     201
     202
     203
     204
     205
     206
     207
     208
     209
     210
     211
     212
     213
     214
     215
     216
     217
     218
     219
     220
     221
     222
     223
     224
     225
     226
     227
     228
     229
     230
     231
     232
     233
     234
     235
     236
     237
     238
     239
     240
     241
     242
     243
     244
     245
     246
     247
     248
     249
     250
     251
     252
     253
     254
     255
     256
     257
     258
     259
     260
     261
     262
     263
     264
     265
     266
     267
     268
     269
     270
     271
     272
     273
     274
     275
     276
     277
     278
     279
     280
     281
     282
     283
     284
     285
     286
     287
     288
     289
     290
     291
     292
     293
     294
     295
     296
     297
     298
     299
     300
     301
     302
     303
     304
     305
     306
     307
     308
     309
     310
     311
     312
     313
     314
     315
     316
     317
     318
     319
     320
     321
     322
     323
     324
     325
     326
     327
     328
     329
     330
     331
     332
     333
     334
     335
     336
     337
     338
     339
     340
     341
     342
     343
     344
     345
     346
     347
     348
     349
     350
     351
     352
     353
     354
     355
     356
     357
     358
     359
     360
     361
     362
     363
     364
     365
     366
     367
     368
     369
     370
     371
     372
     373
     374
     375
     376
     377
     378
     379
     380
     381
     382
     383
     384
     385
     386
     387
     388
     389
     390
     391
     392
     393
     394
     395
     396
     397
     398
      SUBROUTINE CGEEV( JOBVL, JOBVR, N, A, LDA, W, VL, LDVL, VR, LDVR,
     $                  WORK, LWORK, RWORK, INFO )
*
*  -- LAPACK driver routine (version 3.2) --
*  -- LAPACK is a software package provided by Univ. of Tennessee,    --
*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
*     November 2006
*
*     .. Scalar Arguments ..
      CHARACTER          JOBVL, JOBVR
      INTEGER            INFO, LDA, LDVL, LDVR, LWORK, N
*     ..
*     .. Array Arguments ..
      REAL               RWORK( * )
      COMPLEX            A( LDA, * ), VL( LDVL, * ), VR( LDVR, * ),
     $                   W( * ), WORK( * )
*     ..
*
*  Purpose
*  =======
*
*  CGEEV computes for an N-by-N complex nonsymmetric matrix A, the
*  eigenvalues and, optionally, the left and/or right eigenvectors.
*
*  The right eigenvector v(j) of A satisfies
*                   A * v(j) = lambda(j) * v(j)
*  where lambda(j) is its eigenvalue.
*  The left eigenvector u(j) of A satisfies
*                u(j)**H * A = lambda(j) * u(j)**H
*  where u(j)**H denotes the conjugate transpose of u(j).
*
*  The computed eigenvectors are normalized to have Euclidean norm
*  equal to 1 and largest component real.
*
*  Arguments
*  =========
*
*  JOBVL   (input) CHARACTER*1
*          = 'N': left eigenvectors of A are not computed;
*          = 'V': left eigenvectors of are computed.
*
*  JOBVR   (input) CHARACTER*1
*          = 'N': right eigenvectors of A are not computed;
*          = 'V': right eigenvectors of A are computed.
*
*  N       (input) INTEGER
*          The order of the matrix A. N >= 0.
*
*  A       (input/output) COMPLEX array, dimension (LDA,N)
*          On entry, the N-by-N matrix A.
*          On exit, A has been overwritten.
*
*  LDA     (input) INTEGER
*          The leading dimension of the array A.  LDA >= max(1,N).
*
*  W       (output) COMPLEX array, dimension (N)
*          W contains the computed eigenvalues.
*
*  VL      (output) COMPLEX array, dimension (LDVL,N)
*          If JOBVL = 'V', the left eigenvectors u(j) are stored one
*          after another in the columns of VL, in the same order
*          as their eigenvalues.
*          If JOBVL = 'N', VL is not referenced.
*          u(j) = VL(:,j), the j-th column of VL.
*
*  LDVL    (input) INTEGER
*          The leading dimension of the array VL.  LDVL >= 1; if
*          JOBVL = 'V', LDVL >= N.
*
*  VR      (output) COMPLEX array, dimension (LDVR,N)
*          If JOBVR = 'V', the right eigenvectors v(j) are stored one
*          after another in the columns of VR, in the same order
*          as their eigenvalues.
*          If JOBVR = 'N', VR is not referenced.
*          v(j) = VR(:,j), the j-th column of VR.
*
*  LDVR    (input) INTEGER
*          The leading dimension of the array VR.  LDVR >= 1; if
*          JOBVR = 'V', LDVR >= N.
*
*  WORK    (workspace/output) COMPLEX array, dimension (MAX(1,LWORK))
*          On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
*
*  LWORK   (input) INTEGER
*          The dimension of the array WORK.  LWORK >= max(1,2*N).
*          For good performance, LWORK must generally be larger.
*
*          If LWORK = -1, then a workspace query is assumed; the routine
*          only calculates the optimal size of the WORK array, returns
*          this value as the first entry of the WORK array, and no error
*          message related to LWORK is issued by XERBLA.
*
*  RWORK   (workspace) REAL array, dimension (2*N)
*
*  INFO    (output) INTEGER
*          = 0:  successful exit
*          < 0:  if INFO = -i, the i-th argument had an illegal value.
*          > 0:  if INFO = i, the QR algorithm failed to compute all the
*                eigenvalues, and no eigenvectors have been computed;
*                elements and i+1:N of W contain eigenvalues which have
*                converged.
*
*  =====================================================================
*
*     .. Parameters ..
      REAL               ZERO, ONE
      PARAMETER          ( ZERO = 0.0E0, ONE = 1.0E0 )
*     ..
*     .. Local Scalars ..
      LOGICAL            LQUERY, SCALEA, WANTVL, WANTVR
      CHARACTER          SIDE
      INTEGER            HSWORK, I, IBAL, IERR, IHI, ILO, IRWORK, ITAU,
     $                   IWRK, K, MAXWRK, MINWRK, NOUT
      REAL               ANRM, BIGNUM, CSCALE, EPS, SCL, SMLNUM
      COMPLEX            TMP
*     ..
*     .. Local Arrays ..
      LOGICAL            SELECT1 )
      REAL               DUM( 1 )
*     ..
*     .. External Subroutines ..
      EXTERNAL           CGEBAK, CGEBAL, CGEHRD, CHSEQR, CLACPY, CLASCL,
     $                   CSCAL, CSSCAL, CTREVC, CUNGHR, SLABAD, XERBLA
*     ..
*     .. External Functions ..
      LOGICAL            LSAME
      INTEGER            ILAENV, ISAMAX
      REAL               CLANGE, SCNRM2, SLAMCH
      EXTERNAL           LSAME, ILAENV, ISAMAX, CLANGE, SCNRM2, SLAMCH
*     ..
*     .. Intrinsic Functions ..
      INTRINSIC          AIMAGCMPLXCONJGMAX, REAL, SQRT
*     ..
*     .. Executable Statements ..
*
*     Test the input arguments
*
      INFO = 0
      LQUERY = ( LWORK.EQ.-1 )
      WANTVL = LSAME( JOBVL, 'V' )
      WANTVR = LSAME( JOBVR, 'V' )
      IF( ( .NOT.WANTVL ) .AND. ( .NOT.LSAME( JOBVL, 'N' ) ) ) THEN
         INFO = -1
      ELSE IF( ( .NOT.WANTVR ) .AND. ( .NOT.LSAME( JOBVR, 'N' ) ) ) THEN
         INFO = -2
      ELSE IF( N.LT.0 ) THEN
         INFO = -3
      ELSE IF( LDA.LT.MAX1, N ) ) THEN
         INFO = -5
      ELSE IF( LDVL.LT.1 .OR. ( WANTVL .AND. LDVL.LT.N ) ) THEN
         INFO = -8
      ELSE IF( LDVR.LT.1 .OR. ( WANTVR .AND. LDVR.LT.N ) ) THEN
         INFO = -10
      END IF

*
*     Compute workspace
*      (Note: Comments in the code beginning "Workspace:" describe the
*       minimal amount of workspace needed at that point in the code,
*       as well as the preferred amount for good performance.
*       CWorkspace refers to complex workspace, and RWorkspace to real
*       workspace. NB refers to the optimal block size for the
*       immediately following subroutine, as returned by ILAENV.
*       HSWORK refers to the workspace preferred by CHSEQR, as
*       calculated below. HSWORK is computed assuming ILO=1 and IHI=N,
*       the worst case.)
*
      IF( INFO.EQ.0 ) THEN
         IF( N.EQ.0 ) THEN
            MINWRK = 1
            MAXWRK = 1
         ELSE
            MAXWRK = N + N*ILAENV( 1'CGEHRD'' ', N, 1, N, 0 )
            MINWRK = 2*N
            IF( WANTVL ) THEN
               MAXWRK = MAX( MAXWRK, N + ( N - 1 )*ILAENV( 1'CUNGHR',
     $                       ' ', N, 1, N, -1 ) )
               CALL CHSEQR( 'S''V', N, 1, N, A, LDA, W, VL, LDVL,
     $                WORK, -1, INFO )
            ELSE IF( WANTVR ) THEN
               MAXWRK = MAX( MAXWRK, N + ( N - 1 )*ILAENV( 1'CUNGHR',
     $                       ' ', N, 1, N, -1 ) )
               CALL CHSEQR( 'S''V', N, 1, N, A, LDA, W, VR, LDVR,
     $                WORK, -1, INFO )
            ELSE
               CALL CHSEQR( 'E''N', N, 1, N, A, LDA, W, VR, LDVR,
     $                WORK, -1, INFO )
            END IF
            HSWORK = WORK( 1 )
            MAXWRK = MAX( MAXWRK, HSWORK, MINWRK )
         END IF
         WORK( 1 ) = MAXWRK
*
         IF( LWORK.LT.MINWRK .AND. .NOT.LQUERY ) THEN
            INFO = -12
         END IF
      END IF
*
      IF( INFO.NE.0 ) THEN
         CALL XERBLA( 'CGEEV '-INFO )
         RETURN
      ELSE IF( LQUERY ) THEN
         RETURN
      END IF
*
*     Quick return if possible
*
      IF( N.EQ.0 )
     $   RETURN
*
*     Get machine constants
*
      EPS = SLAMCH( 'P' )
      SMLNUM = SLAMCH( 'S' )
      BIGNUM = ONE / SMLNUM
      CALL SLABAD( SMLNUM, BIGNUM )
      SMLNUM = SQRT( SMLNUM ) / EPS
      BIGNUM = ONE / SMLNUM
*
*     Scale A if max element outside range [SMLNUM,BIGNUM]
*
      ANRM = CLANGE( 'M', N, N, A, LDA, DUM )
      SCALEA = .FALSE.
      IF( ANRM.GT.ZERO .AND. ANRM.LT.SMLNUM ) THEN
         SCALEA = .TRUE.
         CSCALE = SMLNUM
      ELSE IF( ANRM.GT.BIGNUM ) THEN
         SCALEA = .TRUE.
         CSCALE = BIGNUM
      END IF
      IF( SCALEA )
     $   CALL CLASCL( 'G'00, ANRM, CSCALE, N, N, A, LDA, IERR )
*
*     Balance the matrix
*     (CWorkspace: none)
*     (RWorkspace: need N)
*
      IBAL = 1
      CALL CGEBAL( 'B', N, A, LDA, ILO, IHI, RWORK( IBAL ), IERR )
*
*     Reduce to upper Hessenberg form
*     (CWorkspace: need 2*N, prefer N+N*NB)
*     (RWorkspace: none)
*
      ITAU = 1
      IWRK = ITAU + N
      CALL CGEHRD( N, ILO, IHI, A, LDA, WORK( ITAU ), WORK( IWRK ),
     $             LWORK-IWRK+1, IERR )
*
      IF( WANTVL ) THEN
*
*        Want left eigenvectors
*        Copy Householder vectors to VL
*
         SIDE = 'L'
         CALL CLACPY( 'L', N, N, A, LDA, VL, LDVL )
*
*        Generate unitary matrix in VL
*        (CWorkspace: need 2*N-1, prefer N+(N-1)*NB)
*        (RWorkspace: none)
*
         CALL CUNGHR( N, ILO, IHI, VL, LDVL, WORK( ITAU ), WORK( IWRK ),
     $                LWORK-IWRK+1, IERR )
*
*        Perform QR iteration, accumulating Schur vectors in VL
*        (CWorkspace: need 1, prefer HSWORK (see comments) )
*        (RWorkspace: none)
*
         IWRK = ITAU
         CALL CHSEQR( 'S''V', N, ILO, IHI, A, LDA, W, VL, LDVL,
     $                WORK( IWRK ), LWORK-IWRK+1, INFO )
*
         IF( WANTVR ) THEN
*
*           Want left and right eigenvectors
*           Copy Schur vectors to VR
*
            SIDE = 'B'
            CALL CLACPY( 'F', N, N, VL, LDVL, VR, LDVR )
         END IF
*
      ELSE IF( WANTVR ) THEN
*
*        Want right eigenvectors
*        Copy Householder vectors to VR
*
         SIDE = 'R'
         CALL CLACPY( 'L', N, N, A, LDA, VR, LDVR )
*
*        Generate unitary matrix in VR
*        (CWorkspace: need 2*N-1, prefer N+(N-1)*NB)
*        (RWorkspace: none)
*
         CALL CUNGHR( N, ILO, IHI, VR, LDVR, WORK( ITAU ), WORK( IWRK ),
     $                LWORK-IWRK+1, IERR )
*
*        Perform QR iteration, accumulating Schur vectors in VR
*        (CWorkspace: need 1, prefer HSWORK (see comments) )
*        (RWorkspace: none)
*
         IWRK = ITAU
         CALL CHSEQR( 'S''V', N, ILO, IHI, A, LDA, W, VR, LDVR,
     $                WORK( IWRK ), LWORK-IWRK+1, INFO )
*
      ELSE
*
*        Compute eigenvalues only
*        (CWorkspace: need 1, prefer HSWORK (see comments) )
*        (RWorkspace: none)
*
         IWRK = ITAU
         CALL CHSEQR( 'E''N', N, ILO, IHI, A, LDA, W, VR, LDVR,
     $                WORK( IWRK ), LWORK-IWRK+1, INFO )
      END IF
*
*     If INFO > 0 from CHSEQR, then quit
*
      IF( INFO.GT.0 )
     $   GO TO 50
*
      IF( WANTVL .OR. WANTVR ) THEN
*
*        Compute left and/or right eigenvectors
*        (CWorkspace: need 2*N)
*        (RWorkspace: need 2*N)
*
         IRWORK = IBAL + N
         CALL CTREVC( SIDE, 'B'SELECT, N, A, LDA, VL, LDVL, VR, LDVR,
     $                N, NOUT, WORK( IWRK ), RWORK( IRWORK ), IERR )
      END IF
*
      IF( WANTVL ) THEN
*
*        Undo balancing of left eigenvectors
*        (CWorkspace: none)
*        (RWorkspace: need N)
*
         CALL CGEBAK( 'B''L', N, ILO, IHI, RWORK( IBAL ), N, VL, LDVL,
     $                IERR )
*
*        Normalize left eigenvectors and make largest component real
*
         DO 20 I = 1, N
            SCL = ONE / SCNRM2( N, VL( 1, I ), 1 )
            CALL CSSCAL( N, SCL, VL( 1, I ), 1 )
            DO 10 K = 1, N
               RWORK( IRWORK+K-1 ) = REAL( VL( K, I ) )**2 +
     $                               AIMAG( VL( K, I ) )**2
   10       CONTINUE
            K = ISAMAX( N, RWORK( IRWORK ), 1 )
            TMP = CONJG( VL( K, I ) ) / SQRT( RWORK( IRWORK+K-1 ) )
            CALL CSCAL( N, TMP, VL( 1, I ), 1 )
            VL( K, I ) = CMPLXREAL( VL( K, I ) ), ZERO )
   20    CONTINUE
      END IF
*
      IF( WANTVR ) THEN
*
*        Undo balancing of right eigenvectors
*        (CWorkspace: none)
*        (RWorkspace: need N)
*
         CALL CGEBAK( 'B''R', N, ILO, IHI, RWORK( IBAL ), N, VR, LDVR,
     $                IERR )
*
*        Normalize right eigenvectors and make largest component real
*
         DO 40 I = 1, N
            SCL = ONE / SCNRM2( N, VR( 1, I ), 1 )
            CALL CSSCAL( N, SCL, VR( 1, I ), 1 )
            DO 30 K = 1, N
               RWORK( IRWORK+K-1 ) = REAL( VR( K, I ) )**2 +
     $                               AIMAG( VR( K, I ) )**2
   30       CONTINUE
            K = ISAMAX( N, RWORK( IRWORK ), 1 )
            TMP = CONJG( VR( K, I ) ) / SQRT( RWORK( IRWORK+K-1 ) )
            CALL CSCAL( N, TMP, VR( 1, I ), 1 )
            VR( K, I ) = CMPLXREAL( VR( K, I ) ), ZERO )
   40    CONTINUE
      END IF
*
*     Undo scaling if necessary
*
   50 CONTINUE
      IF( SCALEA ) THEN
         CALL CLASCL( 'G'00, CSCALE, ANRM, N-INFO, 1, W( INFO+1 ),
     $                MAX( N-INFO, 1 ), IERR )
         IF( INFO.GT.0 ) THEN
            CALL CLASCL( 'G'00, CSCALE, ANRM, ILO-11, W, N, IERR )
         END IF
      END IF
*
      WORK( 1 ) = MAXWRK
      RETURN
*
*     End of CGEEV
*
      END