1
       2
       3
       4
       5
       6
       7
       8
       9
      10
      11
      12
      13
      14
      15
      16
      17
      18
      19
      20
      21
      22
      23
      24
      25
      26
      27
      28
      29
      30
      31
      32
      33
      34
      35
      36
      37
      38
      39
      40
      41
      42
      43
      44
      45
      46
      47
      48
      49
      50
      51
      52
      53
      54
      55
      56
      57
      58
      59
      60
      61
      62
      63
      64
      65
      66
      67
      68
      69
      70
      71
      72
      73
      74
      75
      76
      77
      78
      79
      80
      81
      82
      83
      84
      85
      86
      87
      88
      89
      90
      91
      92
      93
      94
      95
      96
      97
      98
      99
     100
     101
     102
     103
     104
     105
     106
     107
     108
     109
     110
     111
     112
     113
     114
     115
     116
     117
     118
     119
     120
     121
     122
     123
     124
     125
     126
     127
     128
     129
     130
     131
     132
     133
     134
     135
     136
     137
     138
     139
     140
     141
     142
     143
     144
     145
     146
     147
     148
     149
     150
     151
     152
     153
     154
     155
     156
     157
     158
     159
     160
     161
     162
     163
     164
     165
     166
     167
     168
     169
     170
     171
     172
     173
     174
     175
     176
     177
     178
     179
     180
     181
     182
     183
     184
     185
     186
     187
     188
     189
     190
     191
     192
     193
     194
     195
     196
     197
     198
     199
     200
     201
     202
     203
     204
     205
     206
     207
     208
     209
     210
     211
     212
     213
     214
     215
     216
     217
     218
     219
     220
     221
     222
     223
     224
     225
     226
     227
     228
     229
     230
     231
     232
     233
     234
     235
     236
     237
     238
     239
      REAL FUNCTION CLA_SYRCOND_C( UPLO, N, A, LDA, AF, LDAF, IPIV, C,
     $                             CAPPLY, INFO, WORK, RWORK )
*
*     -- LAPACK routine (version 3.2.1)                                 --
*     -- Contributed by James Demmel, Deaglan Halligan, Yozo Hida and --
*     -- Jason Riedy of Univ. of California Berkeley.                 --
*     -- April 2009                                                   --
*
*     -- LAPACK is a software package provided by Univ. of Tennessee, --
*     -- Univ. of California Berkeley and NAG Ltd.                    --
*
      IMPLICIT NONE
*     ..
*     .. Scalar Arguments ..
      CHARACTER          UPLO
      LOGICAL            CAPPLY
      INTEGER            N, LDA, LDAF, INFO
*     ..
*     .. Array Arguments ..
      INTEGER            IPIV( * )
      COMPLEX            A( LDA, * ), AF( LDAF, * ), WORK( * )
      REAL               C( * ), RWORK( * )
*     ..
*
*  Purpose
*  =======
*
*     CLA_SYRCOND_C Computes the infinity norm condition number of
*     op(A) * inv(diag(C)) where C is a REAL vector.
*
*  Arguments
*  =========
*
*     UPLO    (input) CHARACTER*1
*       = 'U':  Upper triangle of A is stored;
*       = 'L':  Lower triangle of A is stored.
*
*     N       (input) INTEGER
*     The number of linear equations, i.e., the order of the
*     matrix A.  N >= 0.
*
*     A       (input) COMPLEX array, dimension (LDA,N)
*     On entry, the N-by-N matrix A
*
*     LDA     (input) INTEGER
*     The leading dimension of the array A.  LDA >= max(1,N).
*
*     AF      (input) COMPLEX array, dimension (LDAF,N)
*     The block diagonal matrix D and the multipliers used to
*     obtain the factor U or L as computed by CSYTRF.
*
*     LDAF    (input) INTEGER
*     The leading dimension of the array AF.  LDAF >= max(1,N).
*
*     IPIV    (input) INTEGER array, dimension (N)
*     Details of the interchanges and the block structure of D
*     as determined by CSYTRF.
*
*     C       (input) REAL array, dimension (N)
*     The vector C in the formula op(A) * inv(diag(C)).
*
*     CAPPLY  (input) LOGICAL
*     If .TRUE. then access the vector C in the formula above.
*
*     INFO    (output) INTEGER
*       = 0:  Successful exit.
*     i > 0:  The ith argument is invalid.
*
*     WORK    (input) COMPLEX array, dimension (2*N).
*     Workspace.
*
*     RWORK   (input) REAL array, dimension (N).
*     Workspace.
*
*  =====================================================================
*
*     .. Local Scalars ..
      INTEGER            KASE
      REAL               AINVNM, ANORM, TMP
      INTEGER            I, J
      LOGICAL            UP
      COMPLEX            ZDUM
*     ..
*     .. Local Arrays ..
      INTEGER            ISAVE( 3 )
*     ..
*     .. External Functions ..
      LOGICAL            LSAME
      EXTERNAL           LSAME
*     ..
*     .. External Subroutines ..
      EXTERNAL           CLACN2, CSYTRS, XERBLA
*     ..
*     .. Intrinsic Functions ..
      INTRINSIC          ABSMAX
*     ..
*     .. Statement Functions ..
      REAL CABS1
*     ..
*     .. Statement Function Definitions ..
      CABS1( ZDUM ) = ABSREAL( ZDUM ) ) + ABSAIMAG( ZDUM ) )
*     ..
*     .. Executable Statements ..
*
      CLA_SYRCOND_C = 0.0E+0
*
      INFO = 0
      IF( N.LT.0 ) THEN
         INFO = -2
      END IF
      IF( INFO.NE.0 ) THEN
         CALL XERBLA( 'CLA_SYRCOND_C'-INFO )
         RETURN
      END IF
      UP = .FALSE.
      IF ( LSAME( UPLO, 'U' ) ) UP = .TRUE.
*
*     Compute norm of op(A)*op2(C).
*
      ANORM = 0.0E+0
      IF ( UP ) THEN
         DO I = 1, N
            TMP = 0.0E+0
            IF ( CAPPLY ) THEN
               DO J = 1, I
                  TMP = TMP + CABS1( A( J, I ) ) / C( J )
               END DO
               DO J = I+1, N
                  TMP = TMP + CABS1( A( I, J ) ) / C( J )
               END DO
            ELSE
               DO J = 1, I
                  TMP = TMP + CABS1( A( J, I ) )
               END DO
               DO J = I+1, N
                  TMP = TMP + CABS1( A( I, J ) )
               END DO
            END IF
            RWORK( I ) = TMP
            ANORM = MAX( ANORM, TMP )
         END DO
      ELSE
         DO I = 1, N
            TMP = 0.0E+0
            IF ( CAPPLY ) THEN
               DO J = 1, I
                  TMP = TMP + CABS1( A( I, J ) ) / C( J )
               END DO
               DO J = I+1, N
                  TMP = TMP + CABS1( A( J, I ) ) / C( J )
               END DO
            ELSE
               DO J = 1, I
                  TMP = TMP + CABS1( A( I, J ) )
               END DO
               DO J = I+1, N
                  TMP = TMP + CABS1( A( J, I ) )
               END DO
            END IF
            RWORK( I ) = TMP
            ANORM = MAX( ANORM, TMP )
         END DO
      END IF
*
*     Quick return if possible.
*
      IF( N.EQ.0 ) THEN
         CLA_SYRCOND_C = 1.0E+0
         RETURN
      ELSE IF( ANORM .EQ. 0.0E+0 ) THEN
         RETURN
      END IF
*
*     Estimate the norm of inv(op(A)).
*
      AINVNM = 0.0E+0
*
      KASE = 0
   10 CONTINUE
      CALL CLACN2( N, WORK( N+1 ), WORK, AINVNM, KASE, ISAVE )
      IF( KASE.NE.0 ) THEN
         IF( KASE.EQ.2 ) THEN
*
*           Multiply by R.
*
            DO I = 1, N
               WORK( I ) = WORK( I ) * RWORK( I )
            END DO
*
            IF ( UP ) THEN
               CALL CSYTRS( 'U', N, 1, AF, LDAF, IPIV,
     $            WORK, N, INFO )
            ELSE
               CALL CSYTRS( 'L', N, 1, AF, LDAF, IPIV,
     $            WORK, N, INFO )
            ENDIF
*
*           Multiply by inv(C).
*
            IF ( CAPPLY ) THEN
               DO I = 1, N
                  WORK( I ) = WORK( I ) * C( I )
               END DO
            END IF
         ELSE
*
*           Multiply by inv(C**T).
*
            IF ( CAPPLY ) THEN
               DO I = 1, N
                  WORK( I ) = WORK( I ) * C( I )
               END DO
            END IF
*
            IF ( UP ) THEN
               CALL CSYTRS( 'U', N, 1, AF, LDAF, IPIV,
     $            WORK, N, INFO )
            ELSE
               CALL CSYTRS( 'L', N, 1, AF, LDAF, IPIV,
     $            WORK, N, INFO )
            END IF
*
*           Multiply by R.
*
            DO I = 1, N
               WORK( I ) = WORK( I ) * RWORK( I )
            END DO
         END IF
         GO TO 10
      END IF
*
*     Compute the estimate of the reciprocal condition number.
*
      IF( AINVNM .NE. 0.0E+0 )
     $   CLA_SYRCOND_C = 1.0E+0 / AINVNM
*
      RETURN
*
      END