1
       2
       3
       4
       5
       6
       7
       8
       9
      10
      11
      12
      13
      14
      15
      16
      17
      18
      19
      20
      21
      22
      23
      24
      25
      26
      27
      28
      29
      30
      31
      32
      33
      34
      35
      36
      37
      38
      39
      40
      41
      42
      43
      44
      45
      46
      47
      48
      49
      50
      51
      52
      53
      54
      55
      56
      57
      58
      59
      60
      61
      62
      63
      64
      65
      66
      67
      68
      69
      70
      71
      72
      73
      74
      75
      76
      77
      78
      79
      80
      81
      82
      83
      84
      85
      86
      87
      88
      89
      90
      91
      92
      93
      94
      95
      96
      97
      98
      99
     100
     101
     102
     103
     104
     105
     106
     107
     108
     109
     110
     111
     112
     113
     114
     115
     116
     117
     118
     119
     120
     121
     122
     123
     124
     125
     126
     127
     128
     129
     130
     131
     132
     133
     134
     135
     136
     137
     138
     139
     140
     141
     142
     143
     144
     145
     146
     147
     148
     149
     150
     151
     152
     153
     154
     155
     156
     157
     158
     159
     160
     161
     162
     163
     164
     165
     166
     167
     168
     169
     170
     171
     172
     173
     174
     175
     176
     177
     178
     179
     180
     181
     182
     183
     184
     185
     186
     187
     188
     189
     190
     191
     192
     193
     194
     195
     196
     197
     198
     199
     200
     201
     202
     203
     204
     205
     206
     207
     208
     209
     210
     211
     212
     213
     214
     215
     216
     217
     218
     219
     220
     221
     222
     223
     224
     225
     226
     227
     228
     229
     230
     231
     232
     233
     234
     235
     236
     237
     238
     239
     240
     241
     242
     243
     244
     245
     246
     247
     248
     249
     250
     251
     252
     253
     254
     255
     256
     257
     258
     259
     260
     261
     262
     263
     264
     265
     266
     267
     268
     269
     270
     271
     272
     273
     274
     275
     276
     277
     278
     279
     280
     281
     282
     283
     284
     285
     286
     287
     288
     289
     290
     291
     292
     293
     294
     295
     296
     297
     298
     299
     300
     301
     302
     303
     304
     305
     306
     307
     308
     309
     310
     311
     312
     313
     314
     315
     316
     317
     318
     319
     320
     321
     322
     323
     324
     325
     326
     327
     328
     329
      SUBROUTINE CLABRD( M, N, NB, A, LDA, D, E, TAUQ, TAUP, X, LDX, Y,
     $                   LDY )
*
*  -- LAPACK auxiliary routine (version 3.3.1) --
*  -- LAPACK is a software package provided by Univ. of Tennessee,    --
*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
*  -- April 2011                                                      --
*
*     .. Scalar Arguments ..
      INTEGER            LDA, LDX, LDY, M, N, NB
*     ..
*     .. Array Arguments ..
      REAL               D( * ), E( * )
      COMPLEX            A( LDA, * ), TAUP( * ), TAUQ( * ), X( LDX, * ),
     $                   Y( LDY, * )
*     ..
*
*  Purpose
*  =======
*
*  CLABRD reduces the first NB rows and columns of a complex general
*  m by n matrix A to upper or lower real bidiagonal form by a unitary
*  transformation Q**H * A * P, and returns the matrices X and Y which
*  are needed to apply the transformation to the unreduced part of A.
*
*  If m >= n, A is reduced to upper bidiagonal form; if m < n, to lower
*  bidiagonal form.
*
*  This is an auxiliary routine called by CGEBRD
*
*  Arguments
*  =========
*
*  M       (input) INTEGER
*          The number of rows in the matrix A.
*
*  N       (input) INTEGER
*          The number of columns in the matrix A.
*
*  NB      (input) INTEGER
*          The number of leading rows and columns of A to be reduced.
*
*  A       (input/output) COMPLEX array, dimension (LDA,N)
*          On entry, the m by n general matrix to be reduced.
*          On exit, the first NB rows and columns of the matrix are
*          overwritten; the rest of the array is unchanged.
*          If m >= n, elements on and below the diagonal in the first NB
*            columns, with the array TAUQ, represent the unitary
*            matrix Q as a product of elementary reflectors; and
*            elements above the diagonal in the first NB rows, with the
*            array TAUP, represent the unitary matrix P as a product
*            of elementary reflectors.
*          If m < n, elements below the diagonal in the first NB
*            columns, with the array TAUQ, represent the unitary
*            matrix Q as a product of elementary reflectors, and
*            elements on and above the diagonal in the first NB rows,
*            with the array TAUP, represent the unitary matrix P as
*            a product of elementary reflectors.
*          See Further Details.
*
*  LDA     (input) INTEGER
*          The leading dimension of the array A.  LDA >= max(1,M).
*
*  D       (output) REAL array, dimension (NB)
*          The diagonal elements of the first NB rows and columns of
*          the reduced matrix.  D(i) = A(i,i).
*
*  E       (output) REAL array, dimension (NB)
*          The off-diagonal elements of the first NB rows and columns of
*          the reduced matrix.
*
*  TAUQ    (output) COMPLEX array dimension (NB)
*          The scalar factors of the elementary reflectors which
*          represent the unitary matrix Q. See Further Details.
*
*  TAUP    (output) COMPLEX array, dimension (NB)
*          The scalar factors of the elementary reflectors which
*          represent the unitary matrix P. See Further Details.
*
*  X       (output) COMPLEX array, dimension (LDX,NB)
*          The m-by-nb matrix X required to update the unreduced part
*          of A.
*
*  LDX     (input) INTEGER
*          The leading dimension of the array X. LDX >= max(1,M).
*
*  Y       (output) COMPLEX array, dimension (LDY,NB)
*          The n-by-nb matrix Y required to update the unreduced part
*          of A.
*
*  LDY     (input) INTEGER
*          The leading dimension of the array Y. LDY >= max(1,N).
*
*  Further Details
*  ===============
*
*  The matrices Q and P are represented as products of elementary
*  reflectors:
*
*     Q = H(1) H(2) . . . H(nb)  and  P = G(1) G(2) . . . G(nb)
*
*  Each H(i) and G(i) has the form:
*
*     H(i) = I - tauq * v * v**H  and G(i) = I - taup * u * u**H
*
*  where tauq and taup are complex scalars, and v and u are complex
*  vectors.
*
*  If m >= n, v(1:i-1) = 0, v(i) = 1, and v(i:m) is stored on exit in
*  A(i:m,i); u(1:i) = 0, u(i+1) = 1, and u(i+1:n) is stored on exit in
*  A(i,i+1:n); tauq is stored in TAUQ(i) and taup in TAUP(i).
*
*  If m < n, v(1:i) = 0, v(i+1) = 1, and v(i+1:m) is stored on exit in
*  A(i+2:m,i); u(1:i-1) = 0, u(i) = 1, and u(i:n) is stored on exit in
*  A(i,i+1:n); tauq is stored in TAUQ(i) and taup in TAUP(i).
*
*  The elements of the vectors v and u together form the m-by-nb matrix
*  V and the nb-by-n matrix U**H which are needed, with X and Y, to apply
*  the transformation to the unreduced part of the matrix, using a block
*  update of the form:  A := A - V*Y**H - X*U**H.
*
*  The contents of A on exit are illustrated by the following examples
*  with nb = 2:
*
*  m = 6 and n = 5 (m > n):          m = 5 and n = 6 (m < n):
*
*    (  1   1   u1  u1  u1 )           (  1   u1  u1  u1  u1  u1 )
*    (  v1  1   1   u2  u2 )           (  1   1   u2  u2  u2  u2 )
*    (  v1  v2  a   a   a  )           (  v1  1   a   a   a   a  )
*    (  v1  v2  a   a   a  )           (  v1  v2  a   a   a   a  )
*    (  v1  v2  a   a   a  )           (  v1  v2  a   a   a   a  )
*    (  v1  v2  a   a   a  )
*
*  where a denotes an element of the original matrix which is unchanged,
*  vi denotes an element of the vector defining H(i), and ui an element
*  of the vector defining G(i).
*
*  =====================================================================
*
*     .. Parameters ..
      COMPLEX            ZERO, ONE
      PARAMETER          ( ZERO = ( 0.0E+00.0E+0 ),
     $                   ONE = ( 1.0E+00.0E+0 ) )
*     ..
*     .. Local Scalars ..
      INTEGER            I
      COMPLEX            ALPHA
*     ..
*     .. External Subroutines ..
      EXTERNAL           CGEMV, CLACGV, CLARFG, CSCAL
*     ..
*     .. Intrinsic Functions ..
      INTRINSIC          MIN
*     ..
*     .. Executable Statements ..
*
*     Quick return if possible
*
      IF( M.LE.0 .OR. N.LE.0 )
     $   RETURN
*
      IF( M.GE.N ) THEN
*
*        Reduce to upper bidiagonal form
*
         DO 10 I = 1, NB
*
*           Update A(i:m,i)
*
            CALL CLACGV( I-1, Y( I, 1 ), LDY )
            CALL CGEMV( 'No transpose', M-I+1, I-1-ONE, A( I, 1 ),
     $                  LDA, Y( I, 1 ), LDY, ONE, A( I, I ), 1 )
            CALL CLACGV( I-1, Y( I, 1 ), LDY )
            CALL CGEMV( 'No transpose', M-I+1, I-1-ONE, X( I, 1 ),
     $                  LDX, A( 1, I ), 1, ONE, A( I, I ), 1 )
*
*           Generate reflection Q(i) to annihilate A(i+1:m,i)
*
            ALPHA = A( I, I )
            CALL CLARFG( M-I+1, ALPHA, A( MIN( I+1, M ), I ), 1,
     $                   TAUQ( I ) )
            D( I ) = ALPHA
            IF( I.LT.N ) THEN
               A( I, I ) = ONE
*
*              Compute Y(i+1:n,i)
*
               CALL CGEMV( 'Conjugate transpose', M-I+1, N-I, ONE,
     $                     A( I, I+1 ), LDA, A( I, I ), 1, ZERO,
     $                     Y( I+1, I ), 1 )
               CALL CGEMV( 'Conjugate transpose', M-I+1, I-1, ONE,
     $                     A( I, 1 ), LDA, A( I, I ), 1, ZERO,
     $                     Y( 1, I ), 1 )
               CALL CGEMV( 'No transpose', N-I, I-1-ONE, Y( I+11 ),
     $                     LDY, Y( 1, I ), 1, ONE, Y( I+1, I ), 1 )
               CALL CGEMV( 'Conjugate transpose', M-I+1, I-1, ONE,
     $                     X( I, 1 ), LDX, A( I, I ), 1, ZERO,
     $                     Y( 1, I ), 1 )
               CALL CGEMV( 'Conjugate transpose', I-1, N-I, -ONE,
     $                     A( 1, I+1 ), LDA, Y( 1, I ), 1, ONE,
     $                     Y( I+1, I ), 1 )
               CALL CSCAL( N-I, TAUQ( I ), Y( I+1, I ), 1 )
*
*              Update A(i,i+1:n)
*
               CALL CLACGV( N-I, A( I, I+1 ), LDA )
               CALL CLACGV( I, A( I, 1 ), LDA )
               CALL CGEMV( 'No transpose', N-I, I, -ONE, Y( I+11 ),
     $                     LDY, A( I, 1 ), LDA, ONE, A( I, I+1 ), LDA )
               CALL CLACGV( I, A( I, 1 ), LDA )
               CALL CLACGV( I-1, X( I, 1 ), LDX )
               CALL CGEMV( 'Conjugate transpose', I-1, N-I, -ONE,
     $                     A( 1, I+1 ), LDA, X( I, 1 ), LDX, ONE,
     $                     A( I, I+1 ), LDA )
               CALL CLACGV( I-1, X( I, 1 ), LDX )
*
*              Generate reflection P(i) to annihilate A(i,i+2:n)
*
               ALPHA = A( I, I+1 )
               CALL CLARFG( N-I, ALPHA, A( I, MIN( I+2, N ) ),
     $                      LDA, TAUP( I ) )
               E( I ) = ALPHA
               A( I, I+1 ) = ONE
*
*              Compute X(i+1:m,i)
*
               CALL CGEMV( 'No transpose', M-I, N-I, ONE, A( I+1, I+1 ),
     $                     LDA, A( I, I+1 ), LDA, ZERO, X( I+1, I ), 1 )
               CALL CGEMV( 'Conjugate transpose', N-I, I, ONE,
     $                     Y( I+11 ), LDY, A( I, I+1 ), LDA, ZERO,
     $                     X( 1, I ), 1 )
               CALL CGEMV( 'No transpose', M-I, I, -ONE, A( I+11 ),
     $                     LDA, X( 1, I ), 1, ONE, X( I+1, I ), 1 )
               CALL CGEMV( 'No transpose', I-1, N-I, ONE, A( 1, I+1 ),
     $                     LDA, A( I, I+1 ), LDA, ZERO, X( 1, I ), 1 )
               CALL CGEMV( 'No transpose', M-I, I-1-ONE, X( I+11 ),
     $                     LDX, X( 1, I ), 1, ONE, X( I+1, I ), 1 )
               CALL CSCAL( M-I, TAUP( I ), X( I+1, I ), 1 )
               CALL CLACGV( N-I, A( I, I+1 ), LDA )
            END IF
   10    CONTINUE
      ELSE
*
*        Reduce to lower bidiagonal form
*
         DO 20 I = 1, NB
*
*           Update A(i,i:n)
*
            CALL CLACGV( N-I+1, A( I, I ), LDA )
            CALL CLACGV( I-1, A( I, 1 ), LDA )
            CALL CGEMV( 'No transpose', N-I+1, I-1-ONE, Y( I, 1 ),
     $                  LDY, A( I, 1 ), LDA, ONE, A( I, I ), LDA )
            CALL CLACGV( I-1, A( I, 1 ), LDA )
            CALL CLACGV( I-1, X( I, 1 ), LDX )
            CALL CGEMV( 'Conjugate transpose', I-1, N-I+1-ONE,
     $                  A( 1, I ), LDA, X( I, 1 ), LDX, ONE, A( I, I ),
     $                  LDA )
            CALL CLACGV( I-1, X( I, 1 ), LDX )
*
*           Generate reflection P(i) to annihilate A(i,i+1:n)
*
            ALPHA = A( I, I )
            CALL CLARFG( N-I+1, ALPHA, A( I, MIN( I+1, N ) ), LDA,
     $                   TAUP( I ) )
            D( I ) = ALPHA
            IF( I.LT.M ) THEN
               A( I, I ) = ONE
*
*              Compute X(i+1:m,i)
*
               CALL CGEMV( 'No transpose', M-I, N-I+1, ONE, A( I+1, I ),
     $                     LDA, A( I, I ), LDA, ZERO, X( I+1, I ), 1 )
               CALL CGEMV( 'Conjugate transpose', N-I+1, I-1, ONE,
     $                     Y( I, 1 ), LDY, A( I, I ), LDA, ZERO,
     $                     X( 1, I ), 1 )
               CALL CGEMV( 'No transpose', M-I, I-1-ONE, A( I+11 ),
     $                     LDA, X( 1, I ), 1, ONE, X( I+1, I ), 1 )
               CALL CGEMV( 'No transpose', I-1, N-I+1, ONE, A( 1, I ),
     $                     LDA, A( I, I ), LDA, ZERO, X( 1, I ), 1 )
               CALL CGEMV( 'No transpose', M-I, I-1-ONE, X( I+11 ),
     $                     LDX, X( 1, I ), 1, ONE, X( I+1, I ), 1 )
               CALL CSCAL( M-I, TAUP( I ), X( I+1, I ), 1 )
               CALL CLACGV( N-I+1, A( I, I ), LDA )
*
*              Update A(i+1:m,i)
*
               CALL CLACGV( I-1, Y( I, 1 ), LDY )
               CALL CGEMV( 'No transpose', M-I, I-1-ONE, A( I+11 ),
     $                     LDA, Y( I, 1 ), LDY, ONE, A( I+1, I ), 1 )
               CALL CLACGV( I-1, Y( I, 1 ), LDY )
               CALL CGEMV( 'No transpose', M-I, I, -ONE, X( I+11 ),
     $                     LDX, A( 1, I ), 1, ONE, A( I+1, I ), 1 )
*
*              Generate reflection Q(i) to annihilate A(i+2:m,i)
*
               ALPHA = A( I+1, I )
               CALL CLARFG( M-I, ALPHA, A( MIN( I+2, M ), I ), 1,
     $                      TAUQ( I ) )
               E( I ) = ALPHA
               A( I+1, I ) = ONE
*
*              Compute Y(i+1:n,i)
*
               CALL CGEMV( 'Conjugate transpose', M-I, N-I, ONE,
     $                     A( I+1, I+1 ), LDA, A( I+1, I ), 1, ZERO,
     $                     Y( I+1, I ), 1 )
               CALL CGEMV( 'Conjugate transpose', M-I, I-1, ONE,
     $                     A( I+11 ), LDA, A( I+1, I ), 1, ZERO,
     $                     Y( 1, I ), 1 )
               CALL CGEMV( 'No transpose', N-I, I-1-ONE, Y( I+11 ),
     $                     LDY, Y( 1, I ), 1, ONE, Y( I+1, I ), 1 )
               CALL CGEMV( 'Conjugate transpose', M-I, I, ONE,
     $                     X( I+11 ), LDX, A( I+1, I ), 1, ZERO,
     $                     Y( 1, I ), 1 )
               CALL CGEMV( 'Conjugate transpose', I, N-I, -ONE,
     $                     A( 1, I+1 ), LDA, Y( 1, I ), 1, ONE,
     $                     Y( I+1, I ), 1 )
               CALL CSCAL( N-I, TAUQ( I ), Y( I+1, I ), 1 )
            ELSE
               CALL CLACGV( N-I+1, A( I, I ), LDA )
            END IF
   20    CONTINUE
      END IF
      RETURN
*
*     End of CLABRD
*
      END