1
       2
       3
       4
       5
       6
       7
       8
       9
      10
      11
      12
      13
      14
      15
      16
      17
      18
      19
      20
      21
      22
      23
      24
      25
      26
      27
      28
      29
      30
      31
      32
      33
      34
      35
      36
      37
      38
      39
      40
      41
      42
      43
      44
      45
      46
      47
      48
      49
      50
      51
      52
      53
      54
      55
      56
      57
      58
      59
      60
      61
      62
      63
      64
      65
      66
      67
      68
      69
      70
      71
      72
      73
      74
      75
      76
      77
      78
      79
      80
      81
      82
      83
      84
      85
      86
      87
      88
      89
      90
      91
      92
      93
      94
      95
      96
      97
      98
      99
     100
     101
     102
     103
     104
     105
     106
     107
     108
     109
     110
     111
     112
     113
     114
     115
     116
     117
     118
     119
     120
     121
     122
     123
     124
     125
     126
     127
     128
     129
     130
     131
     132
     133
     134
     135
     136
     137
     138
     139
     140
     141
     142
     143
     144
     145
     146
     147
     148
     149
     150
     151
     152
     153
     154
     155
     156
     157
     158
     159
     160
     161
     162
     163
     164
     165
     166
     167
     168
     169
     170
     171
     172
     173
     174
     175
     176
     177
     178
     179
     180
     181
     182
     183
     184
     185
     186
     187
     188
     189
     190
     191
     192
     193
     194
     195
     196
     197
     198
     199
     200
     201
     202
     203
     204
     205
     206
     207
     208
     209
     210
     211
     212
     213
     214
     215
     216
     217
     218
     219
     220
     221
     222
     223
     224
     225
     226
     227
     228
     229
     230
     231
     232
     233
     234
     235
     236
     237
     238
     239
     240
     241
     242
     243
     244
     245
     246
     247
     248
     249
     250
     251
     252
     253
     254
     255
     256
     257
     258
     259
     260
     261
     262
     263
     264
      SUBROUTINE CLAEIN( RIGHTV, NOINIT, N, H, LDH, W, V, B, LDB, RWORK,
     $                   EPS3, SMLNUM, INFO )
*
*  -- LAPACK auxiliary routine (version 3.3.1) --
*  -- LAPACK is a software package provided by Univ. of Tennessee,    --
*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
*  -- April 2011                                                      --
*
*     .. Scalar Arguments ..
      LOGICAL            NOINIT, RIGHTV
      INTEGER            INFO, LDB, LDH, N
      REAL               EPS3, SMLNUM
      COMPLEX            W
*     ..
*     .. Array Arguments ..
      REAL               RWORK( * )
      COMPLEX            B( LDB, * ), H( LDH, * ), V( * )
*     ..
*
*  Purpose
*  =======
*
*  CLAEIN uses inverse iteration to find a right or left eigenvector
*  corresponding to the eigenvalue W of a complex upper Hessenberg
*  matrix H.
*
*  Arguments
*  =========
*
*  RIGHTV   (input) LOGICAL
*          = .TRUE. : compute right eigenvector;
*          = .FALSE.: compute left eigenvector.
*
*  NOINIT   (input) LOGICAL
*          = .TRUE. : no initial vector supplied in V
*          = .FALSE.: initial vector supplied in V.
*
*  N       (input) INTEGER
*          The order of the matrix H.  N >= 0.
*
*  H       (input) COMPLEX array, dimension (LDH,N)
*          The upper Hessenberg matrix H.
*
*  LDH     (input) INTEGER
*          The leading dimension of the array H.  LDH >= max(1,N).
*
*  W       (input) COMPLEX
*          The eigenvalue of H whose corresponding right or left
*          eigenvector is to be computed.
*
*  V       (input/output) COMPLEX array, dimension (N)
*          On entry, if NOINIT = .FALSE., V must contain a starting
*          vector for inverse iteration; otherwise V need not be set.
*          On exit, V contains the computed eigenvector, normalized so
*          that the component of largest magnitude has magnitude 1; here
*          the magnitude of a complex number (x,y) is taken to be
*          |x| + |y|.
*
*  B       (workspace) COMPLEX array, dimension (LDB,N)
*
*  LDB     (input) INTEGER
*          The leading dimension of the array B.  LDB >= max(1,N).
*
*  RWORK   (workspace) REAL array, dimension (N)
*
*  EPS3    (input) REAL
*          A small machine-dependent value which is used to perturb
*          close eigenvalues, and to replace zero pivots.
*
*  SMLNUM  (input) REAL
*          A machine-dependent value close to the underflow threshold.
*
*  INFO    (output) INTEGER
*          = 0:  successful exit
*          = 1:  inverse iteration did not converge; V is set to the
*                last iterate.
*
*  =====================================================================
*
*     .. Parameters ..
      REAL               ONE, TENTH
      PARAMETER          ( ONE = 1.0E+0, TENTH = 1.0E-1 )
      COMPLEX            ZERO
      PARAMETER          ( ZERO = ( 0.0E+00.0E+0 ) )
*     ..
*     .. Local Scalars ..
      CHARACTER          NORMIN, TRANS
      INTEGER            I, IERR, ITS, J
      REAL               GROWTO, NRMSML, ROOTN, RTEMP, SCALE, VNORM
      COMPLEX            CDUM, EI, EJ, TEMP, X
*     ..
*     .. External Functions ..
      INTEGER            ICAMAX
      REAL               SCASUM, SCNRM2
      COMPLEX            CLADIV
      EXTERNAL           ICAMAX, SCASUM, SCNRM2, CLADIV
*     ..
*     .. External Subroutines ..
      EXTERNAL           CLATRS, CSSCAL
*     ..
*     .. Intrinsic Functions ..
      INTRINSIC          ABSAIMAGMAX, REAL, SQRT
*     ..
*     .. Statement Functions ..
      REAL               CABS1
*     ..
*     .. Statement Function definitions ..
      CABS1( CDUM ) = ABSREAL( CDUM ) ) + ABSAIMAG( CDUM ) )
*     ..
*     .. Executable Statements ..
*
      INFO = 0
*
*     GROWTO is the threshold used in the acceptance test for an
*     eigenvector.
*
      ROOTN = SQRTREAL( N ) )
      GROWTO = TENTH / ROOTN
      NRMSML = MAX( ONE, EPS3*ROOTN )*SMLNUM
*
*     Form B = H - W*I (except that the subdiagonal elements are not
*     stored).
*
      DO 20 J = 1, N
         DO 10 I = 1, J - 1
            B( I, J ) = H( I, J )
   10    CONTINUE
         B( J, J ) = H( J, J ) - W
   20 CONTINUE
*
      IF( NOINIT ) THEN
*
*        Initialize V.
*
         DO 30 I = 1, N
            V( I ) = EPS3
   30    CONTINUE
      ELSE
*
*        Scale supplied initial vector.
*
         VNORM = SCNRM2( N, V, 1 )
         CALL CSSCAL( N, ( EPS3*ROOTN ) / MAX( VNORM, NRMSML ), V, 1 )
      END IF
*
      IF( RIGHTV ) THEN
*
*        LU decomposition with partial pivoting of B, replacing zero
*        pivots by EPS3.
*
         DO 60 I = 1, N - 1
            EI = H( I+1, I )
            IF( CABS1( B( I, I ) ).LT.CABS1( EI ) ) THEN
*
*              Interchange rows and eliminate.
*
               X = CLADIV( B( I, I ), EI )
               B( I, I ) = EI
               DO 40 J = I + 1, N
                  TEMP = B( I+1, J )
                  B( I+1, J ) = B( I, J ) - X*TEMP
                  B( I, J ) = TEMP
   40          CONTINUE
            ELSE
*
*              Eliminate without interchange.
*
               IF( B( I, I ).EQ.ZERO )
     $            B( I, I ) = EPS3
               X = CLADIV( EI, B( I, I ) )
               IF( X.NE.ZERO ) THEN
                  DO 50 J = I + 1, N
                     B( I+1, J ) = B( I+1, J ) - X*B( I, J )
   50             CONTINUE
               END IF
            END IF
   60    CONTINUE
         IF( B( N, N ).EQ.ZERO )
     $      B( N, N ) = EPS3
*
         TRANS = 'N'
*
      ELSE
*
*        UL decomposition with partial pivoting of B, replacing zero
*        pivots by EPS3.
*
         DO 90 J = N, 2-1
            EJ = H( J, J-1 )
            IF( CABS1( B( J, J ) ).LT.CABS1( EJ ) ) THEN
*
*              Interchange columns and eliminate.
*
               X = CLADIV( B( J, J ), EJ )
               B( J, J ) = EJ
               DO 70 I = 1, J - 1
                  TEMP = B( I, J-1 )
                  B( I, J-1 ) = B( I, J ) - X*TEMP
                  B( I, J ) = TEMP
   70          CONTINUE
            ELSE
*
*              Eliminate without interchange.
*
               IF( B( J, J ).EQ.ZERO )
     $            B( J, J ) = EPS3
               X = CLADIV( EJ, B( J, J ) )
               IF( X.NE.ZERO ) THEN
                  DO 80 I = 1, J - 1
                     B( I, J-1 ) = B( I, J-1 ) - X*B( I, J )
   80             CONTINUE
               END IF
            END IF
   90    CONTINUE
         IF( B( 11 ).EQ.ZERO )
     $      B( 11 ) = EPS3
*
         TRANS = 'C'
*
      END IF
*
      NORMIN = 'N'
      DO 110 ITS = 1, N
*
*        Solve U*x = scale*v for a right eigenvector
*          or U**H *x = scale*v for a left eigenvector,
*        overwriting x on v.
*
         CALL CLATRS( 'Upper', TRANS, 'Nonunit', NORMIN, N, B, LDB, V,
     $                SCALE, RWORK, IERR )
         NORMIN = 'Y'
*
*        Test for sufficient growth in the norm of v.
*
         VNORM = SCASUM( N, V, 1 )
         IF( VNORM.GE.GROWTO*SCALE )
     $      GO TO 120
*
*        Choose new orthogonal starting vector and try again.
*
         RTEMP = EPS3 / ( ROOTN+ONE )
         V( 1 ) = EPS3
         DO 100 I = 2, N
            V( I ) = RTEMP
  100    CONTINUE
         V( N-ITS+1 ) = V( N-ITS+1 ) - EPS3*ROOTN
  110 CONTINUE
*
*     Failure to find eigenvector in N iterations.
*
      INFO = 1
*
  120 CONTINUE
*
*     Normalize eigenvector.
*
      I = ICAMAX( N, V, 1 )
      CALL CSSCAL( N, ONE / CABS1( V( I ) ), V, 1 )
*
      RETURN
*
*     End of CLAEIN
*
      END