1
       2
       3
       4
       5
       6
       7
       8
       9
      10
      11
      12
      13
      14
      15
      16
      17
      18
      19
      20
      21
      22
      23
      24
      25
      26
      27
      28
      29
      30
      31
      32
      33
      34
      35
      36
      37
      38
      39
      40
      41
      42
      43
      44
      45
      46
      47
      48
      49
      50
      51
      52
      53
      54
      55
      56
      57
      58
      59
      60
      61
      62
      63
      64
      65
      66
      67
      68
      69
      70
      71
      72
      73
      74
      75
      76
      77
      78
      79
      80
      81
      82
      83
      84
      85
      86
      87
      88
      89
      90
      91
      92
      93
      94
      95
      96
      97
      98
      99
     100
     101
     102
     103
     104
     105
     106
     107
     108
     109
     110
     111
     112
     113
     114
     115
     116
     117
     118
     119
     120
     121
     122
     123
     124
     125
     126
     127
     128
     129
     130
     131
     132
     133
     134
     135
     136
     137
     138
     139
     140
     141
     142
     143
     144
     145
     146
     147
     148
     149
     150
     151
     152
     153
     154
     155
     156
     157
     158
     159
     160
     161
     162
     163
     164
     165
     166
     167
     168
     169
     170
     171
     172
     173
     174
     175
     176
     177
     178
     179
     180
     181
     182
     183
     184
     185
     186
     187
     188
     189
     190
     191
     192
     193
     194
     195
     196
     197
     198
     199
     200
     201
     202
     203
     204
     205
     206
     207
     208
     209
     210
     211
     212
     213
     214
     215
     216
     217
     218
     219
     220
     221
     222
     223
     224
     225
     226
     227
     228
     229
     230
     231
     232
     233
     234
     235
     236
     237
     238
     239
     240
     241
     242
     243
     244
     245
     246
     247
     248
     249
     250
     251
     252
     253
     254
     255
     256
     257
     258
     259
     260
     261
     262
     263
     264
     265
     266
     267
     268
     269
     270
     271
     272
     273
     274
     275
     276
     277
     278
     279
     280
     281
     282
     283
     284
     285
     286
     287
     288
     289
     290
     291
     292
     293
     294
     295
     296
     297
     298
     299
     300
     301
     302
     303
     304
     305
     306
     307
     308
     309
     310
     311
     312
     313
     314
     315
     316
     317
     318
     319
     320
     321
     322
     323
     324
     325
     326
     327
     328
     329
     330
     331
     332
     333
     334
     335
     336
     337
     338
     339
     340
     341
     342
     343
     344
     345
     346
     347
     348
     349
     350
     351
     352
     353
     354
     355
     356
     357
     358
     359
     360
     361
     362
     363
     364
     365
     366
     367
     368
     369
     370
     371
     372
     373
     374
     375
     376
     377
     378
     379
     380
     381
     382
     383
     384
     385
     386
     387
     388
     389
     390
     391
     392
     393
     394
     395
     396
     397
     398
     399
     400
     401
     402
     403
     404
     405
     406
     407
     408
     409
     410
     411
     412
     413
     414
     415
     416
     417
     418
     419
     420
     421
     422
     423
     424
     425
     426
     427
     428
     429
     430
     431
     432
     433
     434
      SUBROUTINE CLALS0( ICOMPQ, NL, NR, SQRE, NRHS, B, LDB, BX, LDBX,
     $                   PERM, GIVPTR, GIVCOL, LDGCOL, GIVNUM, LDGNUM,
     $                   POLES, DIFL, DIFR, Z, K, C, S, RWORK, INFO )
*
*  -- LAPACK routine (version 3.2) --
*  -- LAPACK is a software package provided by Univ. of Tennessee,    --
*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
*     November 2006
*
*     .. Scalar Arguments ..
      INTEGER            GIVPTR, ICOMPQ, INFO, K, LDB, LDBX, LDGCOL,
     $                   LDGNUM, NL, NR, NRHS, SQRE
      REAL               C, S
*     ..
*     .. Array Arguments ..
      INTEGER            GIVCOL( LDGCOL, * ), PERM( * )
      REAL               DIFL( * ), DIFR( LDGNUM, * ),
     $                   GIVNUM( LDGNUM, * ), POLES( LDGNUM, * ),
     $                   RWORK( * ), Z( * )
      COMPLEX            B( LDB, * ), BX( LDBX, * )
*     ..
*
*  Purpose
*  =======
*
*  CLALS0 applies back the multiplying factors of either the left or the
*  right singular vector matrix of a diagonal matrix appended by a row
*  to the right hand side matrix B in solving the least squares problem
*  using the divide-and-conquer SVD approach.
*
*  For the left singular vector matrix, three types of orthogonal
*  matrices are involved:
*
*  (1L) Givens rotations: the number of such rotations is GIVPTR; the
*       pairs of columns/rows they were applied to are stored in GIVCOL;
*       and the C- and S-values of these rotations are stored in GIVNUM.
*
*  (2L) Permutation. The (NL+1)-st row of B is to be moved to the first
*       row, and for J=2:N, PERM(J)-th row of B is to be moved to the
*       J-th row.
*
*  (3L) The left singular vector matrix of the remaining matrix.
*
*  For the right singular vector matrix, four types of orthogonal
*  matrices are involved:
*
*  (1R) The right singular vector matrix of the remaining matrix.
*
*  (2R) If SQRE = 1, one extra Givens rotation to generate the right
*       null space.
*
*  (3R) The inverse transformation of (2L).
*
*  (4R) The inverse transformation of (1L).
*
*  Arguments
*  =========
*
*  ICOMPQ (input) INTEGER
*         Specifies whether singular vectors are to be computed in
*         factored form:
*         = 0: Left singular vector matrix.
*         = 1: Right singular vector matrix.
*
*  NL     (input) INTEGER
*         The row dimension of the upper block. NL >= 1.
*
*  NR     (input) INTEGER
*         The row dimension of the lower block. NR >= 1.
*
*  SQRE   (input) INTEGER
*         = 0: the lower block is an NR-by-NR square matrix.
*         = 1: the lower block is an NR-by-(NR+1) rectangular matrix.
*
*         The bidiagonal matrix has row dimension N = NL + NR + 1,
*         and column dimension M = N + SQRE.
*
*  NRHS   (input) INTEGER
*         The number of columns of B and BX. NRHS must be at least 1.
*
*  B      (input/output) COMPLEX array, dimension ( LDB, NRHS )
*         On input, B contains the right hand sides of the least
*         squares problem in rows 1 through M. On output, B contains
*         the solution X in rows 1 through N.
*
*  LDB    (input) INTEGER
*         The leading dimension of B. LDB must be at least
*         max(1,MAX( M, N ) ).
*
*  BX     (workspace) COMPLEX array, dimension ( LDBX, NRHS )
*
*  LDBX   (input) INTEGER
*         The leading dimension of BX.
*
*  PERM   (input) INTEGER array, dimension ( N )
*         The permutations (from deflation and sorting) applied
*         to the two blocks.
*
*  GIVPTR (input) INTEGER
*         The number of Givens rotations which took place in this
*         subproblem.
*
*  GIVCOL (input) INTEGER array, dimension ( LDGCOL, 2 )
*         Each pair of numbers indicates a pair of rows/columns
*         involved in a Givens rotation.
*
*  LDGCOL (input) INTEGER
*         The leading dimension of GIVCOL, must be at least N.
*
*  GIVNUM (input) REAL array, dimension ( LDGNUM, 2 )
*         Each number indicates the C or S value used in the
*         corresponding Givens rotation.
*
*  LDGNUM (input) INTEGER
*         The leading dimension of arrays DIFR, POLES and
*         GIVNUM, must be at least K.
*
*  POLES  (input) REAL array, dimension ( LDGNUM, 2 )
*         On entry, POLES(1:K, 1) contains the new singular
*         values obtained from solving the secular equation, and
*         POLES(1:K, 2) is an array containing the poles in the secular
*         equation.
*
*  DIFL   (input) REAL array, dimension ( K ).
*         On entry, DIFL(I) is the distance between I-th updated
*         (undeflated) singular value and the I-th (undeflated) old
*         singular value.
*
*  DIFR   (input) REAL array, dimension ( LDGNUM, 2 ).
*         On entry, DIFR(I, 1) contains the distances between I-th
*         updated (undeflated) singular value and the I+1-th
*         (undeflated) old singular value. And DIFR(I, 2) is the
*         normalizing factor for the I-th right singular vector.
*
*  Z      (input) REAL array, dimension ( K )
*         Contain the components of the deflation-adjusted updating row
*         vector.
*
*  K      (input) INTEGER
*         Contains the dimension of the non-deflated matrix,
*         This is the order of the related secular equation. 1 <= K <=N.
*
*  C      (input) REAL
*         C contains garbage if SQRE =0 and the C-value of a Givens
*         rotation related to the right null space if SQRE = 1.
*
*  S      (input) REAL
*         S contains garbage if SQRE =0 and the S-value of a Givens
*         rotation related to the right null space if SQRE = 1.
*
*  RWORK  (workspace) REAL array, dimension
*         ( K*(1+NRHS) + 2*NRHS )
*
*  INFO   (output) INTEGER
*          = 0:  successful exit.
*          < 0:  if INFO = -i, the i-th argument had an illegal value.
*
*  Further Details
*  ===============
*
*  Based on contributions by
*     Ming Gu and Ren-Cang Li, Computer Science Division, University of
*       California at Berkeley, USA
*     Osni Marques, LBNL/NERSC, USA
*
*  =====================================================================
*
*     .. Parameters ..
      REAL               ONE, ZERO, NEGONE
      PARAMETER          ( ONE = 1.0E0, ZERO = 0.0E0, NEGONE = -1.0E0 )
*     ..
*     .. Local Scalars ..
      INTEGER            I, J, JCOL, JROW, M, N, NLP1
      REAL               DIFLJ, DIFRJ, DJ, DSIGJ, DSIGJP, TEMP
*     ..
*     .. External Subroutines ..
      EXTERNAL           CCOPY, CLACPY, CLASCL, CSROT, CSSCAL, SGEMV,
     $                   XERBLA
*     ..
*     .. External Functions ..
      REAL               SLAMC3, SNRM2
      EXTERNAL           SLAMC3, SNRM2
*     ..
*     .. Intrinsic Functions ..
      INTRINSIC          AIMAGCMPLXMAX, REAL
*     ..
*     .. Executable Statements ..
*
*     Test the input parameters.
*
      INFO = 0
*
      IF( ( ICOMPQ.LT.0 ) .OR. ( ICOMPQ.GT.1 ) ) THEN
         INFO = -1
      ELSE IF( NL.LT.1 ) THEN
         INFO = -2
      ELSE IF( NR.LT.1 ) THEN
         INFO = -3
      ELSE IF( ( SQRE.LT.0 ) .OR. ( SQRE.GT.1 ) ) THEN
         INFO = -4
      END IF
*
      N = NL + NR + 1
*
      IF( NRHS.LT.1 ) THEN
         INFO = -5
      ELSE IF( LDB.LT.N ) THEN
         INFO = -7
      ELSE IF( LDBX.LT.N ) THEN
         INFO = -9
      ELSE IF( GIVPTR.LT.0 ) THEN
         INFO = -11
      ELSE IF( LDGCOL.LT.N ) THEN
         INFO = -13
      ELSE IF( LDGNUM.LT.N ) THEN
         INFO = -15
      ELSE IF( K.LT.1 ) THEN
         INFO = -20
      END IF
      IF( INFO.NE.0 ) THEN
         CALL XERBLA( 'CLALS0'-INFO )
         RETURN
      END IF
*
      M = N + SQRE
      NLP1 = NL + 1
*
      IF( ICOMPQ.EQ.0 ) THEN
*
*        Apply back orthogonal transformations from the left.
*
*        Step (1L): apply back the Givens rotations performed.
*
         DO 10 I = 1, GIVPTR
            CALL CSROT( NRHS, B( GIVCOL( I, 2 ), 1 ), LDB,
     $                  B( GIVCOL( I, 1 ), 1 ), LDB, GIVNUM( I, 2 ),
     $                  GIVNUM( I, 1 ) )
   10    CONTINUE
*
*        Step (2L): permute rows of B.
*
         CALL CCOPY( NRHS, B( NLP1, 1 ), LDB, BX( 11 ), LDBX )
         DO 20 I = 2, N
            CALL CCOPY( NRHS, B( PERM( I ), 1 ), LDB, BX( I, 1 ), LDBX )
   20    CONTINUE
*
*        Step (3L): apply the inverse of the left singular vector
*        matrix to BX.
*
         IF( K.EQ.1 ) THEN
            CALL CCOPY( NRHS, BX, LDBX, B, LDB )
            IF( Z( 1 ).LT.ZERO ) THEN
               CALL CSSCAL( NRHS, NEGONE, B, LDB )
            END IF
         ELSE
            DO 100 J = 1, K
               DIFLJ = DIFL( J )
               DJ = POLES( J, 1 )
               DSIGJ = -POLES( J, 2 )
               IF( J.LT.K ) THEN
                  DIFRJ = -DIFR( J, 1 )
                  DSIGJP = -POLES( J+12 )
               END IF
               IF( ( Z( J ).EQ.ZERO ) .OR. ( POLES( J, 2 ).EQ.ZERO ) )
     $              THEN
                  RWORK( J ) = ZERO
               ELSE
                  RWORK( J ) = -POLES( J, 2 )*Z( J ) / DIFLJ /
     $                         ( POLES( J, 2 )+DJ )
               END IF
               DO 30 I = 1, J - 1
                  IF( ( Z( I ).EQ.ZERO ) .OR.
     $                ( POLES( I, 2 ).EQ.ZERO ) ) THEN
                     RWORK( I ) = ZERO
                  ELSE
                     RWORK( I ) = POLES( I, 2 )*Z( I ) /
     $                            ( SLAMC3( POLES( I, 2 ), DSIGJ )-
     $                            DIFLJ ) / ( POLES( I, 2 )+DJ )
                  END IF
   30          CONTINUE
               DO 40 I = J + 1, K
                  IF( ( Z( I ).EQ.ZERO ) .OR.
     $                ( POLES( I, 2 ).EQ.ZERO ) ) THEN
                     RWORK( I ) = ZERO
                  ELSE
                     RWORK( I ) = POLES( I, 2 )*Z( I ) /
     $                            ( SLAMC3( POLES( I, 2 ), DSIGJP )+
     $                            DIFRJ ) / ( POLES( I, 2 )+DJ )
                  END IF
   40          CONTINUE
               RWORK( 1 ) = NEGONE
               TEMP = SNRM2( K, RWORK, 1 )
*
*              Since B and BX are complex, the following call to SGEMV
*              is performed in two steps (real and imaginary parts).
*
*              CALL SGEMV( 'T', K, NRHS, ONE, BX, LDBX, WORK, 1, ZERO,
*    $                     B( J, 1 ), LDB )
*
               I = K + NRHS*2
               DO 60 JCOL = 1, NRHS
                  DO 50 JROW = 1, K
                     I = I + 1
                     RWORK( I ) = REAL( BX( JROW, JCOL ) )
   50             CONTINUE
   60          CONTINUE
               CALL SGEMV( 'T', K, NRHS, ONE, RWORK( 1+K+NRHS*2 ), K,
     $                     RWORK( 1 ), 1, ZERO, RWORK( 1+K ), 1 )
               I = K + NRHS*2
               DO 80 JCOL = 1, NRHS
                  DO 70 JROW = 1, K
                     I = I + 1
                     RWORK( I ) = AIMAG( BX( JROW, JCOL ) )
   70             CONTINUE
   80          CONTINUE
               CALL SGEMV( 'T', K, NRHS, ONE, RWORK( 1+K+NRHS*2 ), K,
     $                     RWORK( 1 ), 1, ZERO, RWORK( 1+K+NRHS ), 1 )
               DO 90 JCOL = 1, NRHS
                  B( J, JCOL ) = CMPLX( RWORK( JCOL+K ),
     $                           RWORK( JCOL+K+NRHS ) )
   90          CONTINUE
               CALL CLASCL( 'G'00, TEMP, ONE, 1, NRHS, B( J, 1 ),
     $                      LDB, INFO )
  100       CONTINUE
         END IF
*
*        Move the deflated rows of BX to B also.
*
         IF( K.LT.MAX( M, N ) )
     $      CALL CLACPY( 'A', N-K, NRHS, BX( K+11 ), LDBX,
     $                   B( K+11 ), LDB )
      ELSE
*
*        Apply back the right orthogonal transformations.
*
*        Step (1R): apply back the new right singular vector matrix
*        to B.
*
         IF( K.EQ.1 ) THEN
            CALL CCOPY( NRHS, B, LDB, BX, LDBX )
         ELSE
            DO 180 J = 1, K
               DSIGJ = POLES( J, 2 )
               IF( Z( J ).EQ.ZERO ) THEN
                  RWORK( J ) = ZERO
               ELSE
                  RWORK( J ) = -Z( J ) / DIFL( J ) /
     $                         ( DSIGJ+POLES( J, 1 ) ) / DIFR( J, 2 )
               END IF
               DO 110 I = 1, J - 1
                  IF( Z( J ).EQ.ZERO ) THEN
                     RWORK( I ) = ZERO
                  ELSE
                     RWORK( I ) = Z( J ) / ( SLAMC3( DSIGJ, -POLES( I+1,
     $                            2 ) )-DIFR( I, 1 ) ) /
     $                            ( DSIGJ+POLES( I, 1 ) ) / DIFR( I, 2 )
                  END IF
  110          CONTINUE
               DO 120 I = J + 1, K
                  IF( Z( J ).EQ.ZERO ) THEN
                     RWORK( I ) = ZERO
                  ELSE
                     RWORK( I ) = Z( J ) / ( SLAMC3( DSIGJ, -POLES( I,
     $                            2 ) )-DIFL( I ) ) /
     $                            ( DSIGJ+POLES( I, 1 ) ) / DIFR( I, 2 )
                  END IF
  120          CONTINUE
*
*              Since B and BX are complex, the following call to SGEMV
*              is performed in two steps (real and imaginary parts).
*
*              CALL SGEMV( 'T', K, NRHS, ONE, B, LDB, WORK, 1, ZERO,
*    $                     BX( J, 1 ), LDBX )
*
               I = K + NRHS*2
               DO 140 JCOL = 1, NRHS
                  DO 130 JROW = 1, K
                     I = I + 1
                     RWORK( I ) = REAL( B( JROW, JCOL ) )
  130             CONTINUE
  140          CONTINUE
               CALL SGEMV( 'T', K, NRHS, ONE, RWORK( 1+K+NRHS*2 ), K,
     $                     RWORK( 1 ), 1, ZERO, RWORK( 1+K ), 1 )
               I = K + NRHS*2
               DO 160 JCOL = 1, NRHS
                  DO 150 JROW = 1, K
                     I = I + 1
                     RWORK( I ) = AIMAG( B( JROW, JCOL ) )
  150             CONTINUE
  160          CONTINUE
               CALL SGEMV( 'T', K, NRHS, ONE, RWORK( 1+K+NRHS*2 ), K,
     $                     RWORK( 1 ), 1, ZERO, RWORK( 1+K+NRHS ), 1 )
               DO 170 JCOL = 1, NRHS
                  BX( J, JCOL ) = CMPLX( RWORK( JCOL+K ),
     $                            RWORK( JCOL+K+NRHS ) )
  170          CONTINUE
  180       CONTINUE
         END IF
*
*        Step (2R): if SQRE = 1, apply back the rotation that is
*        related to the right null space of the subproblem.
*
         IF( SQRE.EQ.1 ) THEN
            CALL CCOPY( NRHS, B( M, 1 ), LDB, BX( M, 1 ), LDBX )
            CALL CSROT( NRHS, BX( 11 ), LDBX, BX( M, 1 ), LDBX, C, S )
         END IF
         IF( K.LT.MAX( M, N ) )
     $      CALL CLACPY( 'A', N-K, NRHS, B( K+11 ), LDB,
     $                   BX( K+11 ), LDBX )
*
*        Step (3R): permute rows of B.
*
         CALL CCOPY( NRHS, BX( 11 ), LDBX, B( NLP1, 1 ), LDB )
         IF( SQRE.EQ.1 ) THEN
            CALL CCOPY( NRHS, BX( M, 1 ), LDBX, B( M, 1 ), LDB )
         END IF
         DO 190 I = 2, N
            CALL CCOPY( NRHS, BX( I, 1 ), LDBX, B( PERM( I ), 1 ), LDB )
  190    CONTINUE
*
*        Step (4R): apply back the Givens rotations performed.
*
         DO 200 I = GIVPTR, 1-1
            CALL CSROT( NRHS, B( GIVCOL( I, 2 ), 1 ), LDB,
     $                  B( GIVCOL( I, 1 ), 1 ), LDB, GIVNUM( I, 2 ),
     $                  -GIVNUM( I, 1 ) )
  200    CONTINUE
      END IF
*
      RETURN
*
*     End of CLALS0
*
      END