1
       2
       3
       4
       5
       6
       7
       8
       9
      10
      11
      12
      13
      14
      15
      16
      17
      18
      19
      20
      21
      22
      23
      24
      25
      26
      27
      28
      29
      30
      31
      32
      33
      34
      35
      36
      37
      38
      39
      40
      41
      42
      43
      44
      45
      46
      47
      48
      49
      50
      51
      52
      53
      54
      55
      56
      57
      58
      59
      60
      61
      62
      63
      64
      65
      66
      67
      68
      69
      70
      71
      72
      73
      74
      75
      76
      77
      78
      79
      80
      81
      82
      83
      84
      85
      86
      87
      88
      89
      90
      91
      92
      93
      94
      95
      96
      97
      98
      99
     100
     101
     102
     103
     104
     105
     106
     107
     108
     109
     110
     111
     112
     113
     114
     115
     116
     117
     118
     119
     120
     121
     122
     123
     124
     125
     126
     127
     128
     129
     130
     131
     132
     133
     134
     135
     136
     137
     138
     139
     140
     141
     142
     143
     144
     145
     146
     147
     148
     149
     150
     151
     152
     153
     154
     155
     156
     157
     158
     159
     160
     161
     162
     163
     164
     165
     166
     167
     168
     169
     170
     171
     172
     173
     174
     175
     176
     177
     178
     179
     180
     181
     182
     183
     184
     185
     186
     187
     188
     189
     190
     191
     192
     193
     194
     195
     196
     197
     198
     199
     200
     201
     202
     203
     204
     205
     206
     207
     208
     209
     210
     211
     212
     213
     214
     215
     216
     217
     218
     219
     220
     221
     222
     223
     224
     225
     226
     227
     228
     229
     230
     231
     232
     233
     234
     235
     236
     237
     238
     239
     240
     241
     242
     243
     244
     245
     246
     247
     248
     249
     250
     251
     252
     253
     254
     255
     256
     257
     258
     259
     260
     261
     262
     263
     264
     265
     266
     267
     268
     269
     270
     271
     272
     273
     274
     275
     276
     277
     278
     279
     280
     281
     282
     283
     284
     285
     286
     287
     288
     289
     290
     291
     292
     293
     294
     295
     296
     297
     298
     299
     300
     301
     302
     303
     304
     305
     306
     307
     308
     309
     310
     311
     312
     313
     314
     315
     316
     317
     318
     319
     320
     321
     322
     323
     324
     325
     326
     327
     328
     329
     330
     331
     332
     333
     334
     335
     336
     337
     338
     339
     340
     341
     342
     343
     344
     345
     346
     347
     348
     349
     350
     351
     352
     353
     354
     355
     356
     357
     358
     359
     360
     361
     362
     363
     364
     365
     366
     367
     368
     369
     370
     371
     372
     373
     374
     375
     376
     377
     378
     379
     380
     381
     382
     383
     384
     385
     386
     387
     388
     389
     390
     391
     392
     393
     394
     395
     396
     397
     398
     399
     400
     401
     402
     403
     404
     405
     406
     407
     408
     409
     410
     411
     412
     413
     414
     415
     416
     417
     418
     419
     420
     421
     422
     423
     424
     425
     426
     427
     428
     429
     430
     431
     432
     433
     434
     435
     436
     437
     438
     439
     440
     441
     442
     443
     444
     445
     446
     447
     448
     449
     450
     451
     452
     453
     454
     455
     456
     457
     458
     459
     460
     461
     462
     463
     464
     465
     466
     467
     468
     469
     470
     471
     472
     473
     474
     475
     476
     477
     478
     479
     480
     481
     482
     483
     484
     485
     486
     487
     488
     489
     490
     491
     492
     493
     494
     495
     496
     497
     498
     499
     500
     501
     502
     503
     504
      SUBROUTINE CLALSA( ICOMPQ, SMLSIZ, N, NRHS, B, LDB, BX, LDBX, U,
     $                   LDU, VT, K, DIFL, DIFR, Z, POLES, GIVPTR,
     $                   GIVCOL, LDGCOL, PERM, GIVNUM, C, S, RWORK,
     $                   IWORK, INFO )
*
*  -- LAPACK routine (version 3.2) --
*  -- LAPACK is a software package provided by Univ. of Tennessee,    --
*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
*     November 2006
*
*     .. Scalar Arguments ..
      INTEGER            ICOMPQ, INFO, LDB, LDBX, LDGCOL, LDU, N, NRHS,
     $                   SMLSIZ
*     ..
*     .. Array Arguments ..
      INTEGER            GIVCOL( LDGCOL, * ), GIVPTR( * ), IWORK( * ),
     $                   K( * ), PERM( LDGCOL, * )
      REAL               C( * ), DIFL( LDU, * ), DIFR( LDU, * ),
     $                   GIVNUM( LDU, * ), POLES( LDU, * ), RWORK( * ),
     $                   S( * ), U( LDU, * ), VT( LDU, * ), Z( LDU, * )
      COMPLEX            B( LDB, * ), BX( LDBX, * )
*     ..
*
*  Purpose
*  =======
*
*  CLALSA is an itermediate step in solving the least squares problem
*  by computing the SVD of the coefficient matrix in compact form (The
*  singular vectors are computed as products of simple orthorgonal
*  matrices.).
*
*  If ICOMPQ = 0, CLALSA applies the inverse of the left singular vector
*  matrix of an upper bidiagonal matrix to the right hand side; and if
*  ICOMPQ = 1, CLALSA applies the right singular vector matrix to the
*  right hand side. The singular vector matrices were generated in
*  compact form by CLALSA.
*
*  Arguments
*  =========
*
*  ICOMPQ (input) INTEGER
*         Specifies whether the left or the right singular vector
*         matrix is involved.
*         = 0: Left singular vector matrix
*         = 1: Right singular vector matrix
*
*  SMLSIZ (input) INTEGER
*         The maximum size of the subproblems at the bottom of the
*         computation tree.
*
*  N      (input) INTEGER
*         The row and column dimensions of the upper bidiagonal matrix.
*
*  NRHS   (input) INTEGER
*         The number of columns of B and BX. NRHS must be at least 1.
*
*  B      (input/output) COMPLEX array, dimension ( LDB, NRHS )
*         On input, B contains the right hand sides of the least
*         squares problem in rows 1 through M.
*         On output, B contains the solution X in rows 1 through N.
*
*  LDB    (input) INTEGER
*         The leading dimension of B in the calling subprogram.
*         LDB must be at least max(1,MAX( M, N ) ).
*
*  BX     (output) COMPLEX array, dimension ( LDBX, NRHS )
*         On exit, the result of applying the left or right singular
*         vector matrix to B.
*
*  LDBX   (input) INTEGER
*         The leading dimension of BX.
*
*  U      (input) REAL array, dimension ( LDU, SMLSIZ ).
*         On entry, U contains the left singular vector matrices of all
*         subproblems at the bottom level.
*
*  LDU    (input) INTEGER, LDU = > N.
*         The leading dimension of arrays U, VT, DIFL, DIFR,
*         POLES, GIVNUM, and Z.
*
*  VT     (input) REAL array, dimension ( LDU, SMLSIZ+1 ).
*         On entry, VT**H contains the right singular vector matrices of
*         all subproblems at the bottom level.
*
*  K      (input) INTEGER array, dimension ( N ).
*
*  DIFL   (input) REAL array, dimension ( LDU, NLVL ).
*         where NLVL = INT(log_2 (N/(SMLSIZ+1))) + 1.
*
*  DIFR   (input) REAL array, dimension ( LDU, 2 * NLVL ).
*         On entry, DIFL(*, I) and DIFR(*, 2 * I -1) record
*         distances between singular values on the I-th level and
*         singular values on the (I -1)-th level, and DIFR(*, 2 * I)
*         record the normalizing factors of the right singular vectors
*         matrices of subproblems on I-th level.
*
*  Z      (input) REAL array, dimension ( LDU, NLVL ).
*         On entry, Z(1, I) contains the components of the deflation-
*         adjusted updating row vector for subproblems on the I-th
*         level.
*
*  POLES  (input) REAL array, dimension ( LDU, 2 * NLVL ).
*         On entry, POLES(*, 2 * I -1: 2 * I) contains the new and old
*         singular values involved in the secular equations on the I-th
*         level.
*
*  GIVPTR (input) INTEGER array, dimension ( N ).
*         On entry, GIVPTR( I ) records the number of Givens
*         rotations performed on the I-th problem on the computation
*         tree.
*
*  GIVCOL (input) INTEGER array, dimension ( LDGCOL, 2 * NLVL ).
*         On entry, for each I, GIVCOL(*, 2 * I - 1: 2 * I) records the
*         locations of Givens rotations performed on the I-th level on
*         the computation tree.
*
*  LDGCOL (input) INTEGER, LDGCOL = > N.
*         The leading dimension of arrays GIVCOL and PERM.
*
*  PERM   (input) INTEGER array, dimension ( LDGCOL, NLVL ).
*         On entry, PERM(*, I) records permutations done on the I-th
*         level of the computation tree.
*
*  GIVNUM (input) REAL array, dimension ( LDU, 2 * NLVL ).
*         On entry, GIVNUM(*, 2 *I -1 : 2 * I) records the C- and S-
*         values of Givens rotations performed on the I-th level on the
*         computation tree.
*
*  C      (input) REAL array, dimension ( N ).
*         On entry, if the I-th subproblem is not square,
*         C( I ) contains the C-value of a Givens rotation related to
*         the right null space of the I-th subproblem.
*
*  S      (input) REAL array, dimension ( N ).
*         On entry, if the I-th subproblem is not square,
*         S( I ) contains the S-value of a Givens rotation related to
*         the right null space of the I-th subproblem.
*
*  RWORK  (workspace) REAL array, dimension at least
*         MAX( (SMLSZ+1)*NRHS*3, N*(1+NRHS) + 2*NRHS ).
*
*  IWORK  (workspace) INTEGER array.
*         The dimension must be at least 3 * N
*
*  INFO   (output) INTEGER
*          = 0:  successful exit.
*          < 0:  if INFO = -i, the i-th argument had an illegal value.
*
*  Further Details
*  ===============
*
*  Based on contributions by
*     Ming Gu and Ren-Cang Li, Computer Science Division, University of
*       California at Berkeley, USA
*     Osni Marques, LBNL/NERSC, USA
*
*  =====================================================================
*
*     .. Parameters ..
      REAL               ZERO, ONE
      PARAMETER          ( ZERO = 0.0E0, ONE = 1.0E0 )
*     ..
*     .. Local Scalars ..
      INTEGER            I, I1, IC, IM1, INODE, J, JCOL, JIMAG, JREAL,
     $                   JROW, LF, LL, LVL, LVL2, ND, NDB1, NDIML,
     $                   NDIMR, NL, NLF, NLP1, NLVL, NR, NRF, NRP1, SQRE
*     ..
*     .. External Subroutines ..
      EXTERNAL           CCOPY, CLALS0, SGEMM, SLASDT, XERBLA
*     ..
*     .. Intrinsic Functions ..
      INTRINSIC          AIMAGCMPLX, REAL
*     ..
*     .. Executable Statements ..
*
*     Test the input parameters.
*
      INFO = 0
*
      IF( ( ICOMPQ.LT.0 ) .OR. ( ICOMPQ.GT.1 ) ) THEN
         INFO = -1
      ELSE IF( SMLSIZ.LT.3 ) THEN
         INFO = -2
      ELSE IF( N.LT.SMLSIZ ) THEN
         INFO = -3
      ELSE IF( NRHS.LT.1 ) THEN
         INFO = -4
      ELSE IF( LDB.LT.N ) THEN
         INFO = -6
      ELSE IF( LDBX.LT.N ) THEN
         INFO = -8
      ELSE IF( LDU.LT.N ) THEN
         INFO = -10
      ELSE IF( LDGCOL.LT.N ) THEN
         INFO = -19
      END IF
      IF( INFO.NE.0 ) THEN
         CALL XERBLA( 'CLALSA'-INFO )
         RETURN
      END IF
*
*     Book-keeping and  setting up the computation tree.
*
      INODE = 1
      NDIML = INODE + N
      NDIMR = NDIML + N
*
      CALL SLASDT( N, NLVL, ND, IWORK( INODE ), IWORK( NDIML ),
     $             IWORK( NDIMR ), SMLSIZ )
*
*     The following code applies back the left singular vector factors.
*     For applying back the right singular vector factors, go to 170.
*
      IF( ICOMPQ.EQ.1 ) THEN
         GO TO 170
      END IF
*
*     The nodes on the bottom level of the tree were solved
*     by SLASDQ. The corresponding left and right singular vector
*     matrices are in explicit form. First apply back the left
*     singular vector matrices.
*
      NDB1 = ( ND+1 ) / 2
      DO 130 I = NDB1, ND
*
*        IC : center row of each node
*        NL : number of rows of left  subproblem
*        NR : number of rows of right subproblem
*        NLF: starting row of the left   subproblem
*        NRF: starting row of the right  subproblem
*
         I1 = I - 1
         IC = IWORK( INODE+I1 )
         NL = IWORK( NDIML+I1 )
         NR = IWORK( NDIMR+I1 )
         NLF = IC - NL
         NRF = IC + 1
*
*        Since B and BX are complex, the following call to SGEMM
*        is performed in two steps (real and imaginary parts).
*
*        CALL SGEMM( 'T', 'N', NL, NRHS, NL, ONE, U( NLF, 1 ), LDU,
*     $               B( NLF, 1 ), LDB, ZERO, BX( NLF, 1 ), LDBX )
*
         J = NL*NRHS*2
         DO 20 JCOL = 1, NRHS
            DO 10 JROW = NLF, NLF + NL - 1
               J = J + 1
               RWORK( J ) = REAL( B( JROW, JCOL ) )
   10       CONTINUE
   20    CONTINUE
         CALL SGEMM( 'T''N', NL, NRHS, NL, ONE, U( NLF, 1 ), LDU,
     $               RWORK( 1+NL*NRHS*2 ), NL, ZERO, RWORK( 1 ), NL )
         J = NL*NRHS*2
         DO 40 JCOL = 1, NRHS
            DO 30 JROW = NLF, NLF + NL - 1
               J = J + 1
               RWORK( J ) = AIMAG( B( JROW, JCOL ) )
   30       CONTINUE
   40    CONTINUE
         CALL SGEMM( 'T''N', NL, NRHS, NL, ONE, U( NLF, 1 ), LDU,
     $               RWORK( 1+NL*NRHS*2 ), NL, ZERO, RWORK( 1+NL*NRHS ),
     $               NL )
         JREAL = 0
         JIMAG = NL*NRHS
         DO 60 JCOL = 1, NRHS
            DO 50 JROW = NLF, NLF + NL - 1
               JREAL = JREAL + 1
               JIMAG = JIMAG + 1
               BX( JROW, JCOL ) = CMPLX( RWORK( JREAL ),
     $                            RWORK( JIMAG ) )
   50       CONTINUE
   60    CONTINUE
*
*        Since B and BX are complex, the following call to SGEMM
*        is performed in two steps (real and imaginary parts).
*
*        CALL SGEMM( 'T', 'N', NR, NRHS, NR, ONE, U( NRF, 1 ), LDU,
*    $               B( NRF, 1 ), LDB, ZERO, BX( NRF, 1 ), LDBX )
*
         J = NR*NRHS*2
         DO 80 JCOL = 1, NRHS
            DO 70 JROW = NRF, NRF + NR - 1
               J = J + 1
               RWORK( J ) = REAL( B( JROW, JCOL ) )
   70       CONTINUE
   80    CONTINUE
         CALL SGEMM( 'T''N', NR, NRHS, NR, ONE, U( NRF, 1 ), LDU,
     $               RWORK( 1+NR*NRHS*2 ), NR, ZERO, RWORK( 1 ), NR )
         J = NR*NRHS*2
         DO 100 JCOL = 1, NRHS
            DO 90 JROW = NRF, NRF + NR - 1
               J = J + 1
               RWORK( J ) = AIMAG( B( JROW, JCOL ) )
   90       CONTINUE
  100    CONTINUE
         CALL SGEMM( 'T''N', NR, NRHS, NR, ONE, U( NRF, 1 ), LDU,
     $               RWORK( 1+NR*NRHS*2 ), NR, ZERO, RWORK( 1+NR*NRHS ),
     $               NR )
         JREAL = 0
         JIMAG = NR*NRHS
         DO 120 JCOL = 1, NRHS
            DO 110 JROW = NRF, NRF + NR - 1
               JREAL = JREAL + 1
               JIMAG = JIMAG + 1
               BX( JROW, JCOL ) = CMPLX( RWORK( JREAL ),
     $                            RWORK( JIMAG ) )
  110       CONTINUE
  120    CONTINUE
*
  130 CONTINUE
*
*     Next copy the rows of B that correspond to unchanged rows
*     in the bidiagonal matrix to BX.
*
      DO 140 I = 1, ND
         IC = IWORK( INODE+I-1 )
         CALL CCOPY( NRHS, B( IC, 1 ), LDB, BX( IC, 1 ), LDBX )
  140 CONTINUE
*
*     Finally go through the left singular vector matrices of all
*     the other subproblems bottom-up on the tree.
*
      J = 2**NLVL
      SQRE = 0
*
      DO 160 LVL = NLVL, 1-1
         LVL2 = 2*LVL - 1
*
*        find the first node LF and last node LL on
*        the current level LVL
*
         IF( LVL.EQ.1 ) THEN
            LF = 1
            LL = 1
         ELSE
            LF = 2**( LVL-1 )
            LL = 2*LF - 1
         END IF
         DO 150 I = LF, LL
            IM1 = I - 1
            IC = IWORK( INODE+IM1 )
            NL = IWORK( NDIML+IM1 )
            NR = IWORK( NDIMR+IM1 )
            NLF = IC - NL
            NRF = IC + 1
            J = J - 1
            CALL CLALS0( ICOMPQ, NL, NR, SQRE, NRHS, BX( NLF, 1 ), LDBX,
     $                   B( NLF, 1 ), LDB, PERM( NLF, LVL ),
     $                   GIVPTR( J ), GIVCOL( NLF, LVL2 ), LDGCOL,
     $                   GIVNUM( NLF, LVL2 ), LDU, POLES( NLF, LVL2 ),
     $                   DIFL( NLF, LVL ), DIFR( NLF, LVL2 ),
     $                   Z( NLF, LVL ), K( J ), C( J ), S( J ), RWORK,
     $                   INFO )
  150    CONTINUE
  160 CONTINUE
      GO TO 330
*
*     ICOMPQ = 1: applying back the right singular vector factors.
*
  170 CONTINUE
*
*     First now go through the right singular vector matrices of all
*     the tree nodes top-down.
*
      J = 0
      DO 190 LVL = 1, NLVL
         LVL2 = 2*LVL - 1
*
*        Find the first node LF and last node LL on
*        the current level LVL.
*
         IF( LVL.EQ.1 ) THEN
            LF = 1
            LL = 1
         ELSE
            LF = 2**( LVL-1 )
            LL = 2*LF - 1
         END IF
         DO 180 I = LL, LF, -1
            IM1 = I - 1
            IC = IWORK( INODE+IM1 )
            NL = IWORK( NDIML+IM1 )
            NR = IWORK( NDIMR+IM1 )
            NLF = IC - NL
            NRF = IC + 1
            IF( I.EQ.LL ) THEN
               SQRE = 0
            ELSE
               SQRE = 1
            END IF
            J = J + 1
            CALL CLALS0( ICOMPQ, NL, NR, SQRE, NRHS, B( NLF, 1 ), LDB,
     $                   BX( NLF, 1 ), LDBX, PERM( NLF, LVL ),
     $                   GIVPTR( J ), GIVCOL( NLF, LVL2 ), LDGCOL,
     $                   GIVNUM( NLF, LVL2 ), LDU, POLES( NLF, LVL2 ),
     $                   DIFL( NLF, LVL ), DIFR( NLF, LVL2 ),
     $                   Z( NLF, LVL ), K( J ), C( J ), S( J ), RWORK,
     $                   INFO )
  180    CONTINUE
  190 CONTINUE
*
*     The nodes on the bottom level of the tree were solved
*     by SLASDQ. The corresponding right singular vector
*     matrices are in explicit form. Apply them back.
*
      NDB1 = ( ND+1 ) / 2
      DO 320 I = NDB1, ND
         I1 = I - 1
         IC = IWORK( INODE+I1 )
         NL = IWORK( NDIML+I1 )
         NR = IWORK( NDIMR+I1 )
         NLP1 = NL + 1
         IF( I.EQ.ND ) THEN
            NRP1 = NR
         ELSE
            NRP1 = NR + 1
         END IF
         NLF = IC - NL
         NRF = IC + 1
*
*        Since B and BX are complex, the following call to SGEMM is
*        performed in two steps (real and imaginary parts).
*
*        CALL SGEMM( 'T', 'N', NLP1, NRHS, NLP1, ONE, VT( NLF, 1 ), LDU,
*    $               B( NLF, 1 ), LDB, ZERO, BX( NLF, 1 ), LDBX )
*
         J = NLP1*NRHS*2
         DO 210 JCOL = 1, NRHS
            DO 200 JROW = NLF, NLF + NLP1 - 1
               J = J + 1
               RWORK( J ) = REAL( B( JROW, JCOL ) )
  200       CONTINUE
  210    CONTINUE
         CALL SGEMM( 'T''N', NLP1, NRHS, NLP1, ONE, VT( NLF, 1 ), LDU,
     $               RWORK( 1+NLP1*NRHS*2 ), NLP1, ZERO, RWORK( 1 ),
     $               NLP1 )
         J = NLP1*NRHS*2
         DO 230 JCOL = 1, NRHS
            DO 220 JROW = NLF, NLF + NLP1 - 1
               J = J + 1
               RWORK( J ) = AIMAG( B( JROW, JCOL ) )
  220       CONTINUE
  230    CONTINUE
         CALL SGEMM( 'T''N', NLP1, NRHS, NLP1, ONE, VT( NLF, 1 ), LDU,
     $               RWORK( 1+NLP1*NRHS*2 ), NLP1, ZERO,
     $               RWORK( 1+NLP1*NRHS ), NLP1 )
         JREAL = 0
         JIMAG = NLP1*NRHS
         DO 250 JCOL = 1, NRHS
            DO 240 JROW = NLF, NLF + NLP1 - 1
               JREAL = JREAL + 1
               JIMAG = JIMAG + 1
               BX( JROW, JCOL ) = CMPLX( RWORK( JREAL ),
     $                            RWORK( JIMAG ) )
  240       CONTINUE
  250    CONTINUE
*
*        Since B and BX are complex, the following call to SGEMM is
*        performed in two steps (real and imaginary parts).
*
*        CALL SGEMM( 'T', 'N', NRP1, NRHS, NRP1, ONE, VT( NRF, 1 ), LDU,
*    $               B( NRF, 1 ), LDB, ZERO, BX( NRF, 1 ), LDBX )
*
         J = NRP1*NRHS*2
         DO 270 JCOL = 1, NRHS
            DO 260 JROW = NRF, NRF + NRP1 - 1
               J = J + 1
               RWORK( J ) = REAL( B( JROW, JCOL ) )
  260       CONTINUE
  270    CONTINUE
         CALL SGEMM( 'T''N', NRP1, NRHS, NRP1, ONE, VT( NRF, 1 ), LDU,
     $               RWORK( 1+NRP1*NRHS*2 ), NRP1, ZERO, RWORK( 1 ),
     $               NRP1 )
         J = NRP1*NRHS*2
         DO 290 JCOL = 1, NRHS
            DO 280 JROW = NRF, NRF + NRP1 - 1
               J = J + 1
               RWORK( J ) = AIMAG( B( JROW, JCOL ) )
  280       CONTINUE
  290    CONTINUE
         CALL SGEMM( 'T''N', NRP1, NRHS, NRP1, ONE, VT( NRF, 1 ), LDU,
     $               RWORK( 1+NRP1*NRHS*2 ), NRP1, ZERO,
     $               RWORK( 1+NRP1*NRHS ), NRP1 )
         JREAL = 0
         JIMAG = NRP1*NRHS
         DO 310 JCOL = 1, NRHS
            DO 300 JROW = NRF, NRF + NRP1 - 1
               JREAL = JREAL + 1
               JIMAG = JIMAG + 1
               BX( JROW, JCOL ) = CMPLX( RWORK( JREAL ),
     $                            RWORK( JIMAG ) )
  300       CONTINUE
  310    CONTINUE
*
  320 CONTINUE
*
  330 CONTINUE
*
      RETURN
*
*     End of CLALSA
*
      END