1
       2
       3
       4
       5
       6
       7
       8
       9
      10
      11
      12
      13
      14
      15
      16
      17
      18
      19
      20
      21
      22
      23
      24
      25
      26
      27
      28
      29
      30
      31
      32
      33
      34
      35
      36
      37
      38
      39
      40
      41
      42
      43
      44
      45
      46
      47
      48
      49
      50
      51
      52
      53
      54
      55
      56
      57
      58
      59
      60
      61
      62
      63
      64
      65
      66
      67
      68
      69
      70
      71
      72
      73
      74
      75
      76
      77
      78
      79
      80
      81
      82
      83
      84
      85
      86
      87
      88
      89
      90
      91
      92
      93
      94
      95
      96
      97
      98
      99
     100
     101
     102
     103
     104
     105
     106
     107
     108
     109
     110
     111
     112
     113
     114
     115
     116
     117
     118
     119
     120
     121
     122
     123
     124
     125
     126
     127
     128
     129
     130
     131
     132
     133
     134
     135
     136
     137
     138
     139
     140
     141
     142
     143
     144
     145
     146
     147
     148
     149
     150
     151
     152
     153
     154
     155
     156
     157
     158
     159
     160
     161
     162
     163
     164
     165
     166
     167
     168
     169
     170
     171
     172
     173
     174
     175
     176
     177
     178
     179
     180
     181
     182
     183
     184
     185
     186
     187
     188
     189
     190
     191
     192
     193
     194
     195
     196
     197
     198
     199
     200
     201
     202
     203
     204
     205
     206
     207
     208
     209
     210
     211
     212
     213
     214
     215
     216
     217
     218
     219
     220
     221
     222
     223
     224
     225
     226
     227
     228
     229
     230
     231
     232
     233
     234
     235
     236
     237
     238
     239
     240
     241
     242
     243
     244
     245
     246
     247
     248
     249
     250
     251
     252
     253
     254
     255
     256
     257
     258
     259
     260
     261
     262
     263
     264
     265
     266
     267
     268
     269
     270
     271
     272
     273
     274
     275
     276
     277
     278
     279
     280
     281
     282
     283
     284
     285
     286
     287
     288
     289
     290
     291
     292
     293
     294
     295
     296
     297
     298
     299
     300
     301
     302
     303
     304
     305
     306
     307
     308
     309
     310
     311
     312
     313
     314
     315
     316
     317
     318
     319
     320
     321
     322
     323
     324
     325
     326
     327
     328
     329
     330
     331
     332
     333
     334
     335
     336
     337
     338
     339
     340
     341
     342
     343
     344
     345
     346
     347
     348
     349
     350
     351
     352
     353
     354
     355
     356
     357
     358
     359
     360
     361
     362
     363
     364
     365
     366
     367
     368
     369
     370
     371
     372
     373
     374
     375
     376
     377
     378
     379
     380
     381
     382
     383
     384
     385
     386
     387
     388
     389
     390
     391
     392
     393
     394
     395
     396
     397
     398
     399
     400
     401
     402
     403
     404
     405
     406
     407
     408
     409
     410
     411
     412
     413
     414
     415
     416
     417
     418
     419
     420
     421
     422
     423
     424
     425
     426
     427
     428
     429
     430
     431
     432
     433
     434
     435
     436
     437
     438
     439
     440
     441
     442
     443
     444
     445
     446
     447
     448
     449
     450
     451
     452
     453
     454
     455
     456
     457
     458
     459
     460
     461
     462
     463
     464
     465
     466
     467
     468
     469
     470
     471
     472
     473
     474
     475
     476
     477
     478
     479
     480
     481
     482
     483
     484
     485
     486
     487
     488
     489
     490
     491
     492
     493
     494
     495
     496
     497
     498
     499
     500
     501
     502
     503
     504
     505
     506
     507
     508
     509
     510
     511
     512
     513
     514
     515
     516
     517
     518
     519
     520
     521
     522
     523
     524
     525
     526
     527
     528
     529
     530
     531
     532
     533
     534
     535
     536
     537
     538
     539
     540
     541
     542
     543
     544
     545
     546
     547
     548
     549
     550
     551
     552
     553
     554
     555
     556
     557
     558
     559
     560
     561
     562
     563
     564
     565
     566
     567
     568
     569
     570
     571
     572
     573
     574
     575
     576
     577
     578
     579
     580
     581
     582
     583
     584
     585
     586
     587
     588
     589
     590
     591
     592
     593
     594
     595
     596
     597
     598
     599
     600
     601
     602
     603
     604
     605
     606
     607
     608
     609
     610
     611
     612
     613
     614
     615
     616
     617
     618
     619
     620
     621
     622
     623
     624
     625
     626
     627
     628
     629
     630
     631
     632
     633
     634
     635
     636
     637
     638
     639
     640
     641
     642
     643
     644
     645
     646
     647
     648
     649
     650
     651
     652
     653
     654
     655
     656
     657
     658
     659
     660
     661
     662
     663
     664
     665
     666
     667
     668
     669
     670
     671
     672
     673
     674
     675
     676
     677
     678
     679
     680
     681
     682
     683
     684
     685
     686
     687
     688
     689
     690
     691
     692
     693
     694
     695
     696
     697
     698
     699
     700
     701
     702
     703
     704
     705
     706
     707
     708
     709
     710
     711
     712
     713
     714
     715
     716
     717
     718
     719
     720
     721
     722
     723
     724
     725
     726
     727
     728
     729
     730
     731
     732
     733
     734
     735
     736
     737
     738
     739
     740
     741
     742
     743
     744
     745
     746
     747
     748
     749
     750
     751
     752
     753
     754
     755
     756
     757
     758
     759
     760
     761
     762
     763
     764
     765
     766
     767
     768
     769
     770
     771
     772
     773
     774
     775
     776
     777
     778
     779
     780
     781
     782
     783
     784
     785
     786
     787
     788
     789
     790
     791
     792
     793
     794
     795
     796
     797
     798
     799
     800
     801
     802
     803
     804
     805
     806
     807
     808
     809
     810
     811
     812
     813
     814
     815
     816
     817
     818
     819
     820
     821
     822
     823
     824
     825
     826
     827
     828
     829
     830
     831
     832
     833
     834
     835
     836
     837
     838
     839
     840
     841
     842
     843
     844
     845
     846
     847
     848
     849
     850
     851
     852
     853
     854
     855
     856
     857
     858
     859
     860
     861
     862
     863
     864
     865
     866
     867
     868
     869
     870
     871
     872
     873
     874
     875
     876
     877
     878
     879
     880
     881
     882
     883
     884
     885
     886
     887
     888
     889
     890
     891
     892
     893
     894
     895
     896
     897
     898
     899
     900
     901
     902
     903
     904
     905
     906
     907
     908
     909
     910
     911
     912
     913
     914
     915
     916
     917
      SUBROUTINE CLARRV( N, VL, VU, D, L, PIVMIN,
     $                   ISPLIT, M, DOL, DOU, MINRGP,
     $                   RTOL1, RTOL2, W, WERR, WGAP,
     $                   IBLOCK, INDEXW, GERS, Z, LDZ, ISUPPZ,
     $                   WORK, IWORK, INFO )
*
*  -- LAPACK auxiliary routine (version 3.3.1) --
*  -- LAPACK is a software package provided by Univ. of Tennessee,    --
*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
*  -- April 2011                                                      --
*
*     .. Scalar Arguments ..
      INTEGER            DOL, DOU, INFO, LDZ, M, N
      REAL               MINRGP, PIVMIN, RTOL1, RTOL2, VL, VU
*     ..
*     .. Array Arguments ..
      INTEGER            IBLOCK( * ), INDEXW( * ), ISPLIT( * ),
     $                   ISUPPZ( * ), IWORK( * )
      REAL               D( * ), GERS( * ), L( * ), W( * ), WERR( * ),
     $                   WGAP( * ), WORK( * )
      COMPLEX           Z( LDZ, * )
*     ..
*
*  Purpose
*  =======
*
*  CLARRV computes the eigenvectors of the tridiagonal matrix
*  T = L D L**T given L, D and APPROXIMATIONS to the eigenvalues of L D L**T.
*  The input eigenvalues should have been computed by SLARRE.
*
*  Arguments
*  =========
*
*  N       (input) INTEGER
*          The order of the matrix.  N >= 0.
*
*  VL      (input) REAL            
*  VU      (input) REAL            
*          Lower and upper bounds of the interval that contains the desired
*          eigenvalues. VL < VU. Needed to compute gaps on the left or right
*          end of the extremal eigenvalues in the desired RANGE.
*
*  D       (input/output) REAL             array, dimension (N)
*          On entry, the N diagonal elements of the diagonal matrix D.
*          On exit, D may be overwritten.
*
*  L       (input/output) REAL             array, dimension (N)
*          On entry, the (N-1) subdiagonal elements of the unit
*          bidiagonal matrix L are in elements 1 to N-1 of L
*          (if the matrix is not splitted.) At the end of each block
*          is stored the corresponding shift as given by SLARRE.
*          On exit, L is overwritten.
*
*  PIVMIN  (in) DOUBLE PRECISION
*          The minimum pivot allowed in the Sturm sequence.
*
*  ISPLIT  (input) INTEGER array, dimension (N)
*          The splitting points, at which T breaks up into blocks.
*          The first block consists of rows/columns 1 to
*          ISPLIT( 1 ), the second of rows/columns ISPLIT( 1 )+1
*          through ISPLIT( 2 ), etc.
*
*  M       (input) INTEGER
*          The total number of input eigenvalues.  0 <= M <= N.
*
*  DOL     (input) INTEGER
*  DOU     (input) INTEGER
*          If the user wants to compute only selected eigenvectors from all
*          the eigenvalues supplied, he can specify an index range DOL:DOU.
*          Or else the setting DOL=1, DOU=M should be applied.
*          Note that DOL and DOU refer to the order in which the eigenvalues
*          are stored in W.
*          If the user wants to compute only selected eigenpairs, then
*          the columns DOL-1 to DOU+1 of the eigenvector space Z contain the
*          computed eigenvectors. All other columns of Z are set to zero.
*
*  MINRGP  (input) REAL            
*
*  RTOL1   (input) REAL            
*  RTOL2   (input) REAL            
*           Parameters for bisection.
*           An interval [LEFT,RIGHT] has converged if
*           RIGHT-LEFT.LT.MAX( RTOL1*GAP, RTOL2*MAX(|LEFT|,|RIGHT|) )
*
*  W       (input/output) REAL             array, dimension (N)
*          The first M elements of W contain the APPROXIMATE eigenvalues for
*          which eigenvectors are to be computed.  The eigenvalues
*          should be grouped by split-off block and ordered from
*          smallest to largest within the block ( The output array
*          W from SLARRE is expected here ). Furthermore, they are with
*          respect to the shift of the corresponding root representation
*          for their block. On exit, W holds the eigenvalues of the
*          UNshifted matrix.
*
*  WERR    (input/output) REAL             array, dimension (N)
*          The first M elements contain the semiwidth of the uncertainty
*          interval of the corresponding eigenvalue in W
*
*  WGAP    (input/output) REAL             array, dimension (N)
*          The separation from the right neighbor eigenvalue in W.
*
*  IBLOCK  (input) INTEGER array, dimension (N)
*          The indices of the blocks (submatrices) associated with the
*          corresponding eigenvalues in W; IBLOCK(i)=1 if eigenvalue
*          W(i) belongs to the first block from the top, =2 if W(i)
*          belongs to the second block, etc.
*
*  INDEXW  (input) INTEGER array, dimension (N)
*          The indices of the eigenvalues within each block (submatrix);
*          for example, INDEXW(i)= 10 and IBLOCK(i)=2 imply that the
*          i-th eigenvalue W(i) is the 10-th eigenvalue in the second block.
*
*  GERS    (input) REAL             array, dimension (2*N)
*          The N Gerschgorin intervals (the i-th Gerschgorin interval
*          is (GERS(2*i-1), GERS(2*i)). The Gerschgorin intervals should
*          be computed from the original UNshifted matrix.
*
*  Z       (output) COMPLEX          array, dimension (LDZ, max(1,M) )
*          If INFO = 0, the first M columns of Z contain the
*          orthonormal eigenvectors of the matrix T
*          corresponding to the input eigenvalues, with the i-th
*          column of Z holding the eigenvector associated with W(i).
*          Note: the user must ensure that at least max(1,M) columns are
*          supplied in the array Z.
*
*  LDZ     (input) INTEGER
*          The leading dimension of the array Z.  LDZ >= 1, and if
*          JOBZ = 'V', LDZ >= max(1,N).
*
*  ISUPPZ  (output) INTEGER array, dimension ( 2*max(1,M) )
*          The support of the eigenvectors in Z, i.e., the indices
*          indicating the nonzero elements in Z. The I-th eigenvector
*          is nonzero only in elements ISUPPZ( 2*I-1 ) through
*          ISUPPZ( 2*I ).
*
*  WORK    (workspace) REAL             array, dimension (12*N)
*
*  IWORK   (workspace) INTEGER array, dimension (7*N)
*
*  INFO    (output) INTEGER
*          = 0:  successful exit
*
*          > 0:  A problem occured in CLARRV.
*          < 0:  One of the called subroutines signaled an internal problem.
*                Needs inspection of the corresponding parameter IINFO
*                for further information.
*
*          =-1:  Problem in SLARRB when refining a child's eigenvalues.
*          =-2:  Problem in SLARRF when computing the RRR of a child.
*                When a child is inside a tight cluster, it can be difficult
*                to find an RRR. A partial remedy from the user's point of
*                view is to make the parameter MINRGP smaller and recompile.
*                However, as the orthogonality of the computed vectors is
*                proportional to 1/MINRGP, the user should be aware that
*                he might be trading in precision when he decreases MINRGP.
*          =-3:  Problem in SLARRB when refining a single eigenvalue
*                after the Rayleigh correction was rejected.
*          = 5:  The Rayleigh Quotient Iteration failed to converge to
*                full accuracy in MAXITR steps.
*
*  Further Details
*  ===============
*
*  Based on contributions by
*     Beresford Parlett, University of California, Berkeley, USA
*     Jim Demmel, University of California, Berkeley, USA
*     Inderjit Dhillon, University of Texas, Austin, USA
*     Osni Marques, LBNL/NERSC, USA
*     Christof Voemel, University of California, Berkeley, USA
*
*  =====================================================================
*
*     .. Parameters ..
      INTEGER            MAXITR
      PARAMETER          ( MAXITR = 10 )
      COMPLEX            CZERO
      PARAMETER          ( CZERO = ( 0.0E00.0E0 ) )
      REAL               ZERO, ONE, TWO, THREE, FOUR, HALF
      PARAMETER          ( ZERO = 0.0E0, ONE = 1.0E0,
     $                     TWO = 2.0E0, THREE = 3.0E0,
     $                     FOUR = 4.0E0, HALF = 0.5E0)
*     ..
*     .. Local Scalars ..
      LOGICAL            ESKIP, NEEDBS, STP2II, TRYRQC, USEDBS, USEDRQ
      INTEGER            DONE, I, IBEGIN, IDONE, IEND, II, IINDC1,
     $                   IINDC2, IINDR, IINDWK, IINFO, IM, IN, INDEIG,
     $                   INDLD, INDLLD, INDWRK, ISUPMN, ISUPMX, ITER,
     $                   ITMP1, J, JBLK, K, MINIWSIZE, MINWSIZE, NCLUS,
     $                   NDEPTH, NEGCNT, NEWCLS, NEWFST, NEWFTT, NEWLST,
     $                   NEWSIZ, OFFSET, OLDCLS, OLDFST, OLDIEN, OLDLST,
     $                   OLDNCL, P, PARITY, Q, WBEGIN, WEND, WINDEX,
     $                   WINDMN, WINDPL, ZFROM, ZTO, ZUSEDL, ZUSEDU,
     $                   ZUSEDW
      INTEGER            INDIN1, INDIN2
      REAL               BSTRES, BSTW, EPS, FUDGE, GAP, GAPTOL, GL, GU,
     $                   LAMBDA, LEFT, LGAP, MINGMA, NRMINV, RESID,
     $                   RGAP, RIGHT, RQCORR, RQTOL, SAVGAP, SGNDEF,
     $                   SIGMA, SPDIAM, SSIGMA, TAU, TMP, TOL, ZTZ
*     ..
*     .. External Functions ..
      REAL               SLAMCH
      EXTERNAL           SLAMCH
*     ..
*     .. External Subroutines ..
      EXTERNAL           CLAR1V, CLASET, CSSCAL, SCOPY, SLARRB,
     $                   SLARRF
*     ..
*     .. Intrinsic Functions ..
      INTRINSIC ABS, REAL, MAXMIN
      INTRINSIC CMPLX
*     ..
*     .. Executable Statements ..
*     ..

*     The first N entries of WORK are reserved for the eigenvalues
      INDLD = N+1
      INDLLD= 2*N+1
      INDIN1 = 3*+ 1
      INDIN2 = 4*+ 1
      INDWRK = 5*+ 1
      MINWSIZE = 12 * N

      DO 5 I= 1,MINWSIZE
         WORK( I ) = ZERO
 5    CONTINUE

*     IWORK(IINDR+1:IINDR+N) hold the twist indices R for the
*     factorization used to compute the FP vector
      IINDR = 0
*     IWORK(IINDC1+1:IINC2+N) are used to store the clusters of the current
*     layer and the one above.
      IINDC1 = N
      IINDC2 = 2*N
      IINDWK = 3*+ 1

      MINIWSIZE = 7 * N
      DO 10 I= 1,MINIWSIZE
         IWORK( I ) = 0
 10   CONTINUE

      ZUSEDL = 1
      IF(DOL.GT.1THEN
*        Set lower bound for use of Z
         ZUSEDL = DOL-1
      ENDIF
      ZUSEDU = M
      IF(DOU.LT.M) THEN
*        Set lower bound for use of Z
         ZUSEDU = DOU+1
      ENDIF
*     The width of the part of Z that is used
      ZUSEDW = ZUSEDU - ZUSEDL + 1


      CALL CLASET( 'Full', N, ZUSEDW, CZERO, CZERO,
     $                    Z(1,ZUSEDL), LDZ )

      EPS = SLAMCH( 'Precision' )
      RQTOL = TWO * EPS
*
*     Set expert flags for standard code.
      TRYRQC = .TRUE.

      IF((DOL.EQ.1).AND.(DOU.EQ.M)) THEN
      ELSE
*        Only selected eigenpairs are computed. Since the other evalues
*        are not refined by RQ iteration, bisection has to compute to full
*        accuracy.
         RTOL1 = FOUR * EPS
         RTOL2 = FOUR * EPS
      ENDIF

*     The entries WBEGIN:WEND in W, WERR, WGAP correspond to the
*     desired eigenvalues. The support of the nonzero eigenvector
*     entries is contained in the interval IBEGIN:IEND.
*     Remark that if k eigenpairs are desired, then the eigenvectors
*     are stored in k contiguous columns of Z.

*     DONE is the number of eigenvectors already computed
      DONE = 0
      IBEGIN = 1
      WBEGIN = 1
      DO 170 JBLK = 1, IBLOCK( M )
         IEND = ISPLIT( JBLK )
         SIGMA = L( IEND )
*        Find the eigenvectors of the submatrix indexed IBEGIN
*        through IEND.
         WEND = WBEGIN - 1
 15      CONTINUE
         IF( WEND.LT.M ) THEN
            IF( IBLOCK( WEND+1 ).EQ.JBLK ) THEN
               WEND = WEND + 1
               GO TO 15
            END IF
         END IF
         IF( WEND.LT.WBEGIN ) THEN
            IBEGIN = IEND + 1
            GO TO 170
         ELSEIF( (WEND.LT.DOL).OR.(WBEGIN.GT.DOU) ) THEN
            IBEGIN = IEND + 1
            WBEGIN = WEND + 1
            GO TO 170
         END IF

*        Find local spectral diameter of the block
         GL = GERS( 2*IBEGIN-1 )
         GU = GERS( 2*IBEGIN )
         DO 20 I = IBEGIN+1 , IEND
            GL = MIN( GERS( 2*I-1 ), GL )
            GU = MAX( GERS( 2*I ), GU )
 20      CONTINUE
         SPDIAM = GU - GL

*        OLDIEN is the last index of the previous block
         OLDIEN = IBEGIN - 1
*        Calculate the size of the current block
         IN = IEND - IBEGIN + 1
*        The number of eigenvalues in the current block
         IM = WEND - WBEGIN + 1

*        This is for a 1x1 block
         IF( IBEGIN.EQ.IEND ) THEN
            DONE = DONE+1
            Z( IBEGIN, WBEGIN ) = CMPLX( ONE, ZERO )
            ISUPPZ( 2*WBEGIN-1 ) = IBEGIN
            ISUPPZ( 2*WBEGIN ) = IBEGIN
            W( WBEGIN ) = W( WBEGIN ) + SIGMA
            WORK( WBEGIN ) = W( WBEGIN )
            IBEGIN = IEND + 1
            WBEGIN = WBEGIN + 1
            GO TO 170
         END IF

*        The desired (shifted) eigenvalues are stored in W(WBEGIN:WEND)
*        Note that these can be approximations, in this case, the corresp.
*        entries of WERR give the size of the uncertainty interval.
*        The eigenvalue approximations will be refined when necessary as
*        high relative accuracy is required for the computation of the
*        corresponding eigenvectors.
         CALL SCOPY( IM, W( WBEGIN ), 1,
     $                   WORK( WBEGIN ), 1 )

*        We store in W the eigenvalue approximations w.r.t. the original
*        matrix T.
         DO 30 I=1,IM
            W(WBEGIN+I-1= W(WBEGIN+I-1)+SIGMA
 30      CONTINUE


*        NDEPTH is the current depth of the representation tree
         NDEPTH = 0
*        PARITY is either 1 or 0
         PARITY = 1
*        NCLUS is the number of clusters for the next level of the
*        representation tree, we start with NCLUS = 1 for the root
         NCLUS = 1
         IWORK( IINDC1+1 ) = 1
         IWORK( IINDC1+2 ) = IM

*        IDONE is the number of eigenvectors already computed in the current
*        block
         IDONE = 0
*        loop while( IDONE.LT.IM )
*        generate the representation tree for the current block and
*        compute the eigenvectors
   40    CONTINUE
         IF( IDONE.LT.IM ) THEN
*           This is a crude protection against infinitely deep trees
            IF( NDEPTH.GT.M ) THEN
               INFO = -2
               RETURN
            ENDIF
*           breadth first processing of the current level of the representation
*           tree: OLDNCL = number of clusters on current level
            OLDNCL = NCLUS
*           reset NCLUS to count the number of child clusters
            NCLUS = 0
*
            PARITY = 1 - PARITY
            IFPARITY.EQ.0 ) THEN
               OLDCLS = IINDC1
               NEWCLS = IINDC2
            ELSE
               OLDCLS = IINDC2
               NEWCLS = IINDC1
            END IF
*           Process the clusters on the current level
            DO 150 I = 1, OLDNCL
               J = OLDCLS + 2*I
*              OLDFST, OLDLST = first, last index of current cluster.
*                               cluster indices start with 1 and are relative
*                               to WBEGIN when accessing W, WGAP, WERR, Z
               OLDFST = IWORK( J-1 )
               OLDLST = IWORK( J )
               IF( NDEPTH.GT.0 ) THEN
*                 Retrieve relatively robust representation (RRR) of cluster
*                 that has been computed at the previous level
*                 The RRR is stored in Z and overwritten once the eigenvectors
*                 have been computed or when the cluster is refined

                  IF((DOL.EQ.1).AND.(DOU.EQ.M)) THEN
*                    Get representation from location of the leftmost evalue
*                    of the cluster
                     J = WBEGIN + OLDFST - 1
                  ELSE
                     IF(WBEGIN+OLDFST-1.LT.DOL) THEN
*                       Get representation from the left end of Z array
                        J = DOL - 1
                     ELSEIF(WBEGIN+OLDFST-1.GT.DOU) THEN
*                       Get representation from the right end of Z array
                        J = DOU
                     ELSE
                        J = WBEGIN + OLDFST - 1
                     ENDIF
                  ENDIF
                  DO 45 K = 1IN - 1
                     D( IBEGIN+K-1 ) = REAL( Z( IBEGIN+K-1,
     $                                 J ) )
                     L( IBEGIN+K-1 ) = REAL( Z( IBEGIN+K-1,
     $                                 J+1 ) )
   45             CONTINUE
                  D( IEND ) = REAL( Z( IEND, J ) )
                  SIGMA = REAL( Z( IEND, J+1 ) )

*                 Set the corresponding entries in Z to zero
                  CALL CLASET( 'Full'IN2, CZERO, CZERO,
     $                         Z( IBEGIN, J), LDZ )
               END IF

*              Compute DL and DLL of current RRR
               DO 50 J = IBEGIN, IEND-1
                  TMP = D( J )*L( J )
                  WORK( INDLD-1+J ) = TMP
                  WORK( INDLLD-1+J ) = TMP*L( J )
   50          CONTINUE

               IF( NDEPTH.GT.0 ) THEN
*                 P and Q are index of the first and last eigenvalue to compute
*                 within the current block
                  P = INDEXW( WBEGIN-1+OLDFST )
                  Q = INDEXW( WBEGIN-1+OLDLST )
*                 Offset for the arrays WORK, WGAP and WERR, i.e., the P-OFFSET
*                 through the Q-OFFSET elements of these arrays are to be used.
*                  OFFSET = P-OLDFST
                  OFFSET = INDEXW( WBEGIN ) - 1
*                 perform limited bisection (if necessary) to get approximate
*                 eigenvalues to the precision needed.
                  CALL SLARRB( IN, D( IBEGIN ),
     $                         WORK(INDLLD+IBEGIN-1),
     $                         P, Q, RTOL1, RTOL2, OFFSET,
     $                         WORK(WBEGIN),WGAP(WBEGIN),WERR(WBEGIN),
     $                         WORK( INDWRK ), IWORK( IINDWK ),
     $                         PIVMIN, SPDIAM, IN, IINFO )
                  IF( IINFO.NE.0 ) THEN
                     INFO = -1
                     RETURN
                  ENDIF
*                 We also recompute the extremal gaps. W holds all eigenvalues
*                 of the unshifted matrix and must be used for computation
*                 of WGAP, the entries of WORK might stem from RRRs with
*                 different shifts. The gaps from WBEGIN-1+OLDFST to
*                 WBEGIN-1+OLDLST are correctly computed in SLARRB.
*                 However, we only allow the gaps to become greater since
*                 this is what should happen when we decrease WERR
                  IF( OLDFST.GT.1THEN
                     WGAP( WBEGIN+OLDFST-2 ) =
     $             MAX(WGAP(WBEGIN+OLDFST-2),
     $                 W(WBEGIN+OLDFST-1)-WERR(WBEGIN+OLDFST-1)
     $                 - W(WBEGIN+OLDFST-2)-WERR(WBEGIN+OLDFST-2) )
                  ENDIF
                  IF( WBEGIN + OLDLST -1 .LT. WEND ) THEN
                     WGAP( WBEGIN+OLDLST-1 ) =
     $               MAX(WGAP(WBEGIN+OLDLST-1),
     $                   W(WBEGIN+OLDLST)-WERR(WBEGIN+OLDLST)
     $                   - W(WBEGIN+OLDLST-1)-WERR(WBEGIN+OLDLST-1) )
                  ENDIF
*                 Each time the eigenvalues in WORK get refined, we store
*                 the newly found approximation with all shifts applied in W
                  DO 53 J=OLDFST,OLDLST
                     W(WBEGIN+J-1= WORK(WBEGIN+J-1)+SIGMA
 53               CONTINUE
               END IF

*              Process the current node.
               NEWFST = OLDFST
               DO 140 J = OLDFST, OLDLST
                  IF( J.EQ.OLDLST ) THEN
*                    we are at the right end of the cluster, this is also the
*                    boundary of the child cluster
                     NEWLST = J
                  ELSE IF ( WGAP( WBEGIN + J -1).GE.
     $                    MINRGP* ABS( WORK(WBEGIN + J -1) ) ) THEN
*                    the right relative gap is big enough, the child cluster
*                    (NEWFST,..,NEWLST) is well separated from the following
                     NEWLST = J
                   ELSE
*                    inside a child cluster, the relative gap is not
*                    big enough.
                     GOTO 140
                  END IF

*                 Compute size of child cluster found
                  NEWSIZ = NEWLST - NEWFST + 1

*                 NEWFTT is the place in Z where the new RRR or the computed
*                 eigenvector is to be stored
                  IF((DOL.EQ.1).AND.(DOU.EQ.M)) THEN
*                    Store representation at location of the leftmost evalue
*                    of the cluster
                     NEWFTT = WBEGIN + NEWFST - 1
                  ELSE
                     IF(WBEGIN+NEWFST-1.LT.DOL) THEN
*                       Store representation at the left end of Z array
                        NEWFTT = DOL - 1
                     ELSEIF(WBEGIN+NEWFST-1.GT.DOU) THEN
*                       Store representation at the right end of Z array
                        NEWFTT = DOU
                     ELSE
                        NEWFTT = WBEGIN + NEWFST - 1
                     ENDIF
                  ENDIF

                  IF( NEWSIZ.GT.1THEN
*
*                    Current child is not a singleton but a cluster.
*                    Compute and store new representation of child.
*
*
*                    Compute left and right cluster gap.
*
*                    LGAP and RGAP are not computed from WORK because
*                    the eigenvalue approximations may stem from RRRs
*                    different shifts. However, W hold all eigenvalues
*                    of the unshifted matrix. Still, the entries in WGAP
*                    have to be computed from WORK since the entries
*                    in W might be of the same order so that gaps are not
*                    exhibited correctly for very close eigenvalues.
                     IF( NEWFST.EQ.1 ) THEN
                        LGAP = MAX( ZERO,
     $                       W(WBEGIN)-WERR(WBEGIN) - VL )
                    ELSE
                        LGAP = WGAP( WBEGIN+NEWFST-2 )
                     ENDIF
                     RGAP = WGAP( WBEGIN+NEWLST-1 )
*
*                    Compute left- and rightmost eigenvalue of child
*                    to high precision in order to shift as close
*                    as possible and obtain as large relative gaps
*                    as possible
*
                     DO 55 K =1,2
                        IF(K.EQ.1THEN
                           P = INDEXW( WBEGIN-1+NEWFST )
                        ELSE
                           P = INDEXW( WBEGIN-1+NEWLST )
                        ENDIF
                        OFFSET = INDEXW( WBEGIN ) - 1
                        CALL SLARRB( IN, D(IBEGIN),
     $                       WORK( INDLLD+IBEGIN-1 ),P,P,
     $                       RQTOL, RQTOL, OFFSET,
     $                       WORK(WBEGIN),WGAP(WBEGIN),
     $                       WERR(WBEGIN),WORK( INDWRK ),
     $                       IWORK( IINDWK ), PIVMIN, SPDIAM,
     $                       IN, IINFO )
 55                  CONTINUE
*
                     IF((WBEGIN+NEWLST-1.LT.DOL).OR.
     $                  (WBEGIN+NEWFST-1.GT.DOU)) THEN
*                       if the cluster contains no desired eigenvalues
*                       skip the computation of that branch of the rep. tree
*
*                       We could skip before the refinement of the extremal
*                       eigenvalues of the child, but then the representation
*                       tree could be different from the one when nothing is
*                       skipped. For this reason we skip at this place.
                        IDONE = IDONE + NEWLST - NEWFST + 1
                        GOTO 139
                     ENDIF
*
*                    Compute RRR of child cluster.
*                    Note that the new RRR is stored in Z
*
*                    SLARRF needs LWORK = 2*N
                     CALL SLARRF( IN, D( IBEGIN ), L( IBEGIN ),
     $                         WORK(INDLD+IBEGIN-1),
     $                         NEWFST, NEWLST, WORK(WBEGIN),
     $                         WGAP(WBEGIN), WERR(WBEGIN),
     $                         SPDIAM, LGAP, RGAP, PIVMIN, TAU,
     $                         WORK( INDIN1 ), WORK( INDIN2 ),
     $                         WORK( INDWRK ), IINFO )
*                    In the complex case, SLARRF cannot write
*                    the new RRR directly into Z and needs an intermediate
*                    workspace
                     DO 56 K = 1IN-1
                        Z( IBEGIN+K-1, NEWFTT ) =
     $                     CMPLX( WORK( INDIN1+K-1 ), ZERO )
                        Z( IBEGIN+K-1, NEWFTT+1 ) =
     $                     CMPLX( WORK( INDIN2+K-1 ), ZERO )
   56                CONTINUE
                     Z( IEND, NEWFTT ) =
     $                  CMPLX( WORK( INDIN1+IN-1 ), ZERO )
                     IF( IINFO.EQ.0 ) THEN
*                       a new RRR for the cluster was found by SLARRF
*                       update shift and store it
                        SSIGMA = SIGMA + TAU
                        Z( IEND, NEWFTT+1 ) = CMPLX( SSIGMA, ZERO )
*                       WORK() are the midpoints and WERR() the semi-width
*                       Note that the entries in W are unchanged.
                        DO 116 K = NEWFST, NEWLST
                           FUDGE =
     $                          THREE*EPS*ABS(WORK(WBEGIN+K-1))
                           WORK( WBEGIN + K - 1 ) =
     $                          WORK( WBEGIN + K - 1- TAU
                           FUDGE = FUDGE +
     $                          FOUR*EPS*ABS(WORK(WBEGIN+K-1))
*                          Fudge errors
                           WERR( WBEGIN + K - 1 ) =
     $                          WERR( WBEGIN + K - 1 ) + FUDGE
*                          Gaps are not fudged. Provided that WERR is small
*                          when eigenvalues are close, a zero gap indicates
*                          that a new representation is needed for resolving
*                          the cluster. A fudge could lead to a wrong decision
*                          of judging eigenvalues 'separated' which in
*                          reality are not. This could have a negative impact
*                          on the orthogonality of the computed eigenvectors.
 116                    CONTINUE

                        NCLUS = NCLUS + 1
                        K = NEWCLS + 2*NCLUS
                        IWORK( K-1 ) = NEWFST
                        IWORK( K ) = NEWLST
                     ELSE
                        INFO = -2
                        RETURN
                     ENDIF
                  ELSE
*
*                    Compute eigenvector of singleton
*
                     ITER = 0
*
                     TOL = FOUR * LOG(REAL(IN)) * EPS
*
                     K = NEWFST
                     WINDEX = WBEGIN + K - 1
                     WINDMN = MAX(WINDEX - 1,1)
                     WINDPL = MIN(WINDEX + 1,M)
                     LAMBDA = WORK( WINDEX )
                     DONE = DONE + 1
*                    Check if eigenvector computation is to be skipped
                     IF((WINDEX.LT.DOL).OR.
     $                  (WINDEX.GT.DOU)) THEN
                        ESKIP = .TRUE.
                        GOTO 125
                     ELSE
                        ESKIP = .FALSE.
                     ENDIF
                     LEFT = WORK( WINDEX ) - WERR( WINDEX )
                     RIGHT = WORK( WINDEX ) + WERR( WINDEX )
                     INDEIG = INDEXW( WINDEX )
*                    Note that since we compute the eigenpairs for a child,
*                    all eigenvalue approximations are w.r.t the same shift.
*                    In this case, the entries in WORK should be used for
*                    computing the gaps since they exhibit even very small
*                    differences in the eigenvalues, as opposed to the
*                    entries in W which might "look" the same.

                     IF( K .EQ. 1THEN
*                       In the case RANGE='I' and with not much initial
*                       accuracy in LAMBDA and VL, the formula
*                       LGAP = MAX( ZERO, (SIGMA - VL) + LAMBDA )
*                       can lead to an overestimation of the left gap and
*                       thus to inadequately early RQI 'convergence'.
*                       Prevent this by forcing a small left gap.
                        LGAP = EPS*MAX(ABS(LEFT),ABS(RIGHT))
                     ELSE
                        LGAP = WGAP(WINDMN)
                     ENDIF
                     IF( K .EQ. IM) THEN
*                       In the case RANGE='I' and with not much initial
*                       accuracy in LAMBDA and VU, the formula
*                       can lead to an overestimation of the right gap and
*                       thus to inadequately early RQI 'convergence'.
*                       Prevent this by forcing a small right gap.
                        RGAP = EPS*MAX(ABS(LEFT),ABS(RIGHT))
                     ELSE
                        RGAP = WGAP(WINDEX)
                     ENDIF
                     GAP = MIN( LGAP, RGAP )
                     IF(( K .EQ. 1).OR.(K .EQ. IM)) THEN
*                       The eigenvector support can become wrong
*                       because significant entries could be cut off due to a
*                       large GAPTOL parameter in LAR1V. Prevent this.
                        GAPTOL = ZERO
                     ELSE
                        GAPTOL = GAP * EPS
                     ENDIF
                     ISUPMN = IN
                     ISUPMX = 1
*                    Update WGAP so that it holds the minimum gap
*                    to the left or the right. This is crucial in the
*                    case where bisection is used to ensure that the
*                    eigenvalue is refined up to the required precision.
*                    The correct value is restored afterwards.
                     SAVGAP = WGAP(WINDEX)
                     WGAP(WINDEX) = GAP
*                    We want to use the Rayleigh Quotient Correction
*                    as often as possible since it converges quadratically
*                    when we are close enough to the desired eigenvalue.
*                    However, the Rayleigh Quotient can have the wrong sign
*                    and lead us away from the desired eigenvalue. In this
*                    case, the best we can do is to use bisection.
                     USEDBS = .FALSE.
                     USEDRQ = .FALSE.
*                    Bisection is initially turned off unless it is forced
                     NEEDBS =  .NOT.TRYRQC
 120                 CONTINUE
*                    Check if bisection should be used to refine eigenvalue
                     IF(NEEDBS) THEN
*                       Take the bisection as new iterate
                        USEDBS = .TRUE.
                        ITMP1 = IWORK( IINDR+WINDEX )
                        OFFSET = INDEXW( WBEGIN ) - 1
                        CALL SLARRB( IN, D(IBEGIN),
     $                       WORK(INDLLD+IBEGIN-1),INDEIG,INDEIG,
     $                       ZERO, TWO*EPS, OFFSET,
     $                       WORK(WBEGIN),WGAP(WBEGIN),
     $                       WERR(WBEGIN),WORK( INDWRK ),
     $                       IWORK( IINDWK ), PIVMIN, SPDIAM,
     $                       ITMP1, IINFO )
                        IF( IINFO.NE.0 ) THEN
                           INFO = -3
                           RETURN
                        ENDIF
                        LAMBDA = WORK( WINDEX )
*                       Reset twist index from inaccurate LAMBDA to
*                       force computation of true MINGMA
                        IWORK( IINDR+WINDEX ) = 0
                     ENDIF
*                    Given LAMBDA, compute the eigenvector.
                     CALL CLAR1V( IN1IN, LAMBDA, D( IBEGIN ),
     $                    L( IBEGIN ), WORK(INDLD+IBEGIN-1),
     $                    WORK(INDLLD+IBEGIN-1),
     $                    PIVMIN, GAPTOL, Z( IBEGIN, WINDEX ),
     $                    .NOT.USEDBS, NEGCNT, ZTZ, MINGMA,
     $                    IWORK( IINDR+WINDEX ), ISUPPZ( 2*WINDEX-1 ),
     $                    NRMINV, RESID, RQCORR, WORK( INDWRK ) )
                     IF(ITER .EQ. 0THEN
                        BSTRES = RESID
                        BSTW = LAMBDA
                     ELSEIF(RESID.LT.BSTRES) THEN
                        BSTRES = RESID
                        BSTW = LAMBDA
                     ENDIF
                     ISUPMN = MIN(ISUPMN,ISUPPZ( 2*WINDEX-1 ))
                     ISUPMX = MAX(ISUPMX,ISUPPZ( 2*WINDEX ))
                     ITER = ITER + 1

*                    sin alpha <= |resid|/gap
*                    Note that both the residual and the gap are
*                    proportional to the matrix, so ||T|| doesn't play
*                    a role in the quotient

*
*                    Convergence test for Rayleigh-Quotient iteration
*                    (omitted when Bisection has been used)
*
                     IF( RESID.GT.TOL*GAP .AND. ABS( RQCORR ).GT.
     $                    RQTOL*ABS( LAMBDA ) .AND. .NOT. USEDBS)
     $                    THEN
*                       We need to check that the RQCORR update doesn't
*                       move the eigenvalue away from the desired one and
*                       towards a neighbor. -> protection with bisection
                        IF(INDEIG.LE.NEGCNT) THEN
*                          The wanted eigenvalue lies to the left
                           SGNDEF = -ONE
                        ELSE
*                          The wanted eigenvalue lies to the right
                           SGNDEF = ONE
                        ENDIF
*                       We only use the RQCORR if it improves the
*                       the iterate reasonably.
                        IF( ( RQCORR*SGNDEF.GE.ZERO )
     $                       .AND.( LAMBDA + RQCORR.LE. RIGHT)
     $                       .AND.( LAMBDA + RQCORR.GE. LEFT)
     $                       ) THEN
                           USEDRQ = .TRUE.
*                          Store new midpoint of bisection interval in WORK
                           IF(SGNDEF.EQ.ONE) THEN
*                             The current LAMBDA is on the left of the true
*                             eigenvalue
                              LEFT = LAMBDA
*                             We prefer to assume that the error estimate
*                             is correct. We could make the interval not
*                             as a bracket but to be modified if the RQCORR
*                             chooses to. In this case, the RIGHT side should
*                             be modified as follows:
*                              RIGHT = MAX(RIGHT, LAMBDA + RQCORR)
                           ELSE
*                             The current LAMBDA is on the right of the true
*                             eigenvalue
                              RIGHT = LAMBDA
*                             See comment about assuming the error estimate is
*                             correct above.
*                              LEFT = MIN(LEFT, LAMBDA + RQCORR)
                           ENDIF
                           WORK( WINDEX ) =
     $                       HALF * (RIGHT + LEFT)
*                          Take RQCORR since it has the correct sign and
*                          improves the iterate reasonably
                           LAMBDA = LAMBDA + RQCORR
*                          Update width of error interval
                           WERR( WINDEX ) =
     $                             HALF * (RIGHT-LEFT)
                        ELSE
                           NEEDBS = .TRUE.
                        ENDIF
                        IF(RIGHT-LEFT.LT.RQTOL*ABS(LAMBDA)) THEN
*                             The eigenvalue is computed to bisection accuracy
*                             compute eigenvector and stop
                           USEDBS = .TRUE.
                           GOTO 120
                        ELSEIF( ITER.LT.MAXITR ) THEN
                           GOTO 120
                        ELSEIF( ITER.EQ.MAXITR ) THEN
                           NEEDBS = .TRUE.
                           GOTO 120
                        ELSE
                           INFO = 5
                           RETURN
                        END IF
                     ELSE
                        STP2II = .FALSE.
        IF(USEDRQ .AND. USEDBS .AND.
     $                     BSTRES.LE.RESID) THEN
                           LAMBDA = BSTW
                           STP2II = .TRUE.
                        ENDIF
                        IF (STP2II) THEN
*                          improve error angle by second step
                           CALL CLAR1V( IN1IN, LAMBDA,
     $                          D( IBEGIN ), L( IBEGIN ),
     $                          WORK(INDLD+IBEGIN-1),
     $                          WORK(INDLLD+IBEGIN-1),
     $                          PIVMIN, GAPTOL, Z( IBEGIN, WINDEX ),
     $                          .NOT.USEDBS, NEGCNT, ZTZ, MINGMA,
     $                          IWORK( IINDR+WINDEX ),
     $                          ISUPPZ( 2*WINDEX-1 ),
     $                          NRMINV, RESID, RQCORR, WORK( INDWRK ) )
                        ENDIF
                        WORK( WINDEX ) = LAMBDA
                     END IF
*
*                    Compute FP-vector support w.r.t. whole matrix
*
                     ISUPPZ( 2*WINDEX-1 ) = ISUPPZ( 2*WINDEX-1 )+OLDIEN
                     ISUPPZ( 2*WINDEX ) = ISUPPZ( 2*WINDEX )+OLDIEN
                     ZFROM = ISUPPZ( 2*WINDEX-1 )
                     ZTO = ISUPPZ( 2*WINDEX )
                     ISUPMN = ISUPMN + OLDIEN
                     ISUPMX = ISUPMX + OLDIEN
*                    Ensure vector is ok if support in the RQI has changed
                     IF(ISUPMN.LT.ZFROM) THEN
                        DO 122 II = ISUPMN,ZFROM-1
                           Z( II, WINDEX ) = ZERO
 122                    CONTINUE
                     ENDIF
                     IF(ISUPMX.GT.ZTO) THEN
                        DO 123 II = ZTO+1,ISUPMX
                           Z( II, WINDEX ) = ZERO
 123                    CONTINUE
                     ENDIF
                     CALL CSSCAL( ZTO-ZFROM+1, NRMINV,
     $                       Z( ZFROM, WINDEX ), 1 )
 125                 CONTINUE
*                    Update W
                     W( WINDEX ) = LAMBDA+SIGMA
*                    Recompute the gaps on the left and right
*                    But only allow them to become larger and not
*                    smaller (which can only happen through "bad"
*                    cancellation and doesn't reflect the theory
*                    where the initial gaps are underestimated due
*                    to WERR being too crude.)
                     IF(.NOT.ESKIP) THEN
                        IF( K.GT.1THEN
                           WGAP( WINDMN ) = MAX( WGAP(WINDMN),
     $                          W(WINDEX)-WERR(WINDEX)
     $                          - W(WINDMN)-WERR(WINDMN) )
                        ENDIF
                        IF( WINDEX.LT.WEND ) THEN
                           WGAP( WINDEX ) = MAX( SAVGAP,
     $                          W( WINDPL )-WERR( WINDPL )
     $                          - W( WINDEX )-WERR( WINDEX) )
                        ENDIF
                     ENDIF
                     IDONE = IDONE + 1
                  ENDIF
*                 here ends the code for the current child
*
 139              CONTINUE
*                 Proceed to any remaining child nodes
                  NEWFST = J + 1
 140           CONTINUE
 150        CONTINUE
            NDEPTH = NDEPTH + 1
            GO TO 40
         END IF
         IBEGIN = IEND + 1
         WBEGIN = WEND + 1
 170  CONTINUE
*

      RETURN
*
*     End of CLARRV
*
      END