1
       2
       3
       4
       5
       6
       7
       8
       9
      10
      11
      12
      13
      14
      15
      16
      17
      18
      19
      20
      21
      22
      23
      24
      25
      26
      27
      28
      29
      30
      31
      32
      33
      34
      35
      36
      37
      38
      39
      40
      41
      42
      43
      44
      45
      46
      47
      48
      49
      50
      51
      52
      53
      54
      55
      56
      57
      58
      59
      60
      61
      62
      63
      64
      65
      66
      67
      68
      69
      70
      71
      72
      73
      74
      75
      76
      77
      78
      79
      80
      81
      82
      83
      84
      85
      86
      87
      88
      89
      90
      91
      92
      93
      94
      95
      96
      97
      98
      99
     100
     101
     102
     103
     104
     105
     106
     107
     108
     109
     110
     111
     112
     113
     114
     115
     116
     117
     118
     119
     120
     121
     122
     123
     124
     125
     126
     127
     128
     129
     130
     131
     132
     133
     134
     135
     136
     137
     138
     139
     140
     141
     142
     143
     144
     145
     146
     147
     148
     149
     150
     151
     152
     153
     154
     155
     156
     157
     158
     159
     160
     161
     162
     163
     164
     165
     166
     167
     168
     169
     170
     171
     172
     173
     174
     175
     176
     177
     178
     179
     180
     181
     182
     183
     184
     185
     186
     187
     188
     189
     190
     191
     192
     193
     194
     195
     196
     197
     198
     199
     200
     201
     202
     203
     204
     205
     206
     207
     208
     209
     210
     211
     212
     213
     214
     215
     216
     217
     218
     219
     220
     221
     222
     223
     224
     225
     226
     227
     228
     229
     230
     231
     232
     233
     234
     235
      SUBROUTINE CLARZB( SIDE, TRANS, DIRECT, STOREV, M, N, K, L, V,
     $                   LDV, T, LDT, C, LDC, WORK, LDWORK )
*
*  -- LAPACK routine (version 3.3.1) --
*  -- LAPACK is a software package provided by Univ. of Tennessee,    --
*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
*  -- April 2011                                                      --
*
*     .. Scalar Arguments ..
      CHARACTER          DIRECT, SIDE, STOREV, TRANS
      INTEGER            K, L, LDC, LDT, LDV, LDWORK, M, N
*     ..
*     .. Array Arguments ..
      COMPLEX            C( LDC, * ), T( LDT, * ), V( LDV, * ),
     $                   WORK( LDWORK, * )
*     ..
*
*  Purpose
*  =======
*
*  CLARZB applies a complex block reflector H or its transpose H**H
*  to a complex distributed M-by-N  C from the left or the right.
*
*  Currently, only STOREV = 'R' and DIRECT = 'B' are supported.
*
*  Arguments
*  =========
*
*  SIDE    (input) CHARACTER*1
*          = 'L': apply H or H**H from the Left
*          = 'R': apply H or H**H from the Right
*
*  TRANS   (input) CHARACTER*1
*          = 'N': apply H (No transpose)
*          = 'C': apply H**H (Conjugate transpose)
*
*  DIRECT  (input) CHARACTER*1
*          Indicates how H is formed from a product of elementary
*          reflectors
*          = 'F': H = H(1) H(2) . . . H(k) (Forward, not supported yet)
*          = 'B': H = H(k) . . . H(2) H(1) (Backward)
*
*  STOREV  (input) CHARACTER*1
*          Indicates how the vectors which define the elementary
*          reflectors are stored:
*          = 'C': Columnwise                        (not supported yet)
*          = 'R': Rowwise
*
*  M       (input) INTEGER
*          The number of rows of the matrix C.
*
*  N       (input) INTEGER
*          The number of columns of the matrix C.
*
*  K       (input) INTEGER
*          The order of the matrix T (= the number of elementary
*          reflectors whose product defines the block reflector).
*
*  L       (input) INTEGER
*          The number of columns of the matrix V containing the
*          meaningful part of the Householder reflectors.
*          If SIDE = 'L', M >= L >= 0, if SIDE = 'R', N >= L >= 0.
*
*  V       (input) COMPLEX array, dimension (LDV,NV).
*          If STOREV = 'C', NV = K; if STOREV = 'R', NV = L.
*
*  LDV     (input) INTEGER
*          The leading dimension of the array V.
*          If STOREV = 'C', LDV >= L; if STOREV = 'R', LDV >= K.
*
*  T       (input) COMPLEX array, dimension (LDT,K)
*          The triangular K-by-K matrix T in the representation of the
*          block reflector.
*
*  LDT     (input) INTEGER
*          The leading dimension of the array T. LDT >= K.
*
*  C       (input/output) COMPLEX array, dimension (LDC,N)
*          On entry, the M-by-N matrix C.
*          On exit, C is overwritten by H*C or H**H*C or C*H or C*H**H.
*
*  LDC     (input) INTEGER
*          The leading dimension of the array C. LDC >= max(1,M).
*
*  WORK    (workspace) COMPLEX array, dimension (LDWORK,K)
*
*  LDWORK  (input) INTEGER
*          The leading dimension of the array WORK.
*          If SIDE = 'L', LDWORK >= max(1,N);
*          if SIDE = 'R', LDWORK >= max(1,M).
*
*  Further Details
*  ===============
*
*  Based on contributions by
*    A. Petitet, Computer Science Dept., Univ. of Tenn., Knoxville, USA
*
*  =====================================================================
*
*     .. Parameters ..
      COMPLEX            ONE
      PARAMETER          ( ONE = ( 1.0E+00.0E+0 ) )
*     ..
*     .. Local Scalars ..
      CHARACTER          TRANST
      INTEGER            I, INFO, J
*     ..
*     .. External Functions ..
      LOGICAL            LSAME
      EXTERNAL           LSAME
*     ..
*     .. External Subroutines ..
      EXTERNAL           CCOPY, CGEMM, CLACGV, CTRMM, XERBLA
*     ..
*     .. Executable Statements ..
*
*     Quick return if possible
*
      IF( M.LE.0 .OR. N.LE.0 )
     $   RETURN
*
*     Check for currently supported options
*
      INFO = 0
      IF.NOT.LSAME( DIRECT'B' ) ) THEN
         INFO = -3
      ELSE IF.NOT.LSAME( STOREV, 'R' ) ) THEN
         INFO = -4
      END IF
      IF( INFO.NE.0 ) THEN
         CALL XERBLA( 'CLARZB'-INFO )
         RETURN
      END IF
*
      IF( LSAME( TRANS, 'N' ) ) THEN
         TRANST = 'C'
      ELSE
         TRANST = 'N'
      END IF
*
      IF( LSAME( SIDE, 'L' ) ) THEN
*
*        Form  H * C  or  H**H * C
*
*        W( 1:n, 1:k ) = C( 1:k, 1:n )**H
*
         DO 10 J = 1, K
            CALL CCOPY( N, C( J, 1 ), LDC, WORK( 1, J ), 1 )
   10    CONTINUE
*
*        W( 1:n, 1:k ) = W( 1:n, 1:k ) + ...
*                        C( m-l+1:m, 1:n )**H * V( 1:k, 1:l )**T
*
         IF( L.GT.0 )
     $      CALL CGEMM( 'Transpose''Conjugate transpose', N, K, L,
     $                  ONE, C( M-L+11 ), LDC, V, LDV, ONE, WORK,
     $                  LDWORK )
*
*        W( 1:n, 1:k ) = W( 1:n, 1:k ) * T**T  or  W( 1:m, 1:k ) * T
*
         CALL CTRMM( 'Right''Lower', TRANST, 'Non-unit', N, K, ONE, T,
     $               LDT, WORK, LDWORK )
*
*        C( 1:k, 1:n ) = C( 1:k, 1:n ) - W( 1:n, 1:k )**H
*
         DO 30 J = 1, N
            DO 20 I = 1, K
               C( I, J ) = C( I, J ) - WORK( J, I )
   20       CONTINUE
   30    CONTINUE
*
*        C( m-l+1:m, 1:n ) = C( m-l+1:m, 1:n ) - ...
*                            V( 1:k, 1:l )**H * W( 1:n, 1:k )**H
*
         IF( L.GT.0 )
     $      CALL CGEMM( 'Transpose''Transpose', L, N, K, -ONE, V, LDV,
     $                  WORK, LDWORK, ONE, C( M-L+11 ), LDC )
*
      ELSE IF( LSAME( SIDE, 'R' ) ) THEN
*
*        Form  C * H  or  C * H**H
*
*        W( 1:m, 1:k ) = C( 1:m, 1:k )
*
         DO 40 J = 1, K
            CALL CCOPY( M, C( 1, J ), 1, WORK( 1, J ), 1 )
   40    CONTINUE
*
*        W( 1:m, 1:k ) = W( 1:m, 1:k ) + ...
*                        C( 1:m, n-l+1:n ) * V( 1:k, 1:l )**H
*
         IF( L.GT.0 )
     $      CALL CGEMM( 'No transpose''Transpose', M, K, L, ONE,
     $                  C( 1, N-L+1 ), LDC, V, LDV, ONE, WORK, LDWORK )
*
*        W( 1:m, 1:k ) = W( 1:m, 1:k ) * conjg( T )  or
*                        W( 1:m, 1:k ) * T**H
*
         DO 50 J = 1, K
            CALL CLACGV( K-J+1, T( J, J ), 1 )
   50    CONTINUE
         CALL CTRMM( 'Right''Lower', TRANS, 'Non-unit', M, K, ONE, T,
     $               LDT, WORK, LDWORK )
         DO 60 J = 1, K
            CALL CLACGV( K-J+1, T( J, J ), 1 )
   60    CONTINUE
*
*        C( 1:m, 1:k ) = C( 1:m, 1:k ) - W( 1:m, 1:k )
*
         DO 80 J = 1, K
            DO 70 I = 1, M
               C( I, J ) = C( I, J ) - WORK( I, J )
   70       CONTINUE
   80    CONTINUE
*
*        C( 1:m, n-l+1:n ) = C( 1:m, n-l+1:n ) - ...
*                            W( 1:m, 1:k ) * conjg( V( 1:k, 1:l ) )
*
         DO 90 J = 1, L
            CALL CLACGV( K, V( 1, J ), 1 )
   90    CONTINUE
         IF( L.GT.0 )
     $      CALL CGEMM( 'No transpose''No transpose', M, L, K, -ONE,
     $                  WORK, LDWORK, V, LDV, ONE, C( 1, N-L+1 ), LDC )
         DO 100 J = 1, L
            CALL CLACGV( K, V( 1, J ), 1 )
  100    CONTINUE
*
      END IF
*
      RETURN
*
*     End of CLARZB
*
      END