1
       2
       3
       4
       5
       6
       7
       8
       9
      10
      11
      12
      13
      14
      15
      16
      17
      18
      19
      20
      21
      22
      23
      24
      25
      26
      27
      28
      29
      30
      31
      32
      33
      34
      35
      36
      37
      38
      39
      40
      41
      42
      43
      44
      45
      46
      47
      48
      49
      50
      51
      52
      53
      54
      55
      56
      57
      58
      59
      60
      61
      62
      63
      64
      65
      66
      67
      68
      69
      70
      71
      72
      73
      74
      75
      76
      77
      78
      79
      80
      81
      82
      83
      84
      85
      86
      87
      88
      89
      90
      91
      92
      93
      94
      95
      96
      97
      98
      99
     100
     101
     102
     103
     104
     105
     106
     107
     108
     109
     110
     111
     112
     113
     114
     115
     116
     117
     118
     119
     120
     121
     122
     123
     124
     125
     126
     127
     128
     129
     130
     131
     132
     133
     134
     135
     136
     137
     138
     139
     140
     141
     142
     143
     144
     145
     146
     147
     148
     149
     150
     151
     152
     153
     154
     155
     156
     157
     158
     159
     160
     161
     162
     163
     164
     165
     166
     167
     168
     169
     170
     171
     172
     173
     174
     175
     176
     177
     178
     179
     180
     181
     182
     183
     184
     185
     186
     187
     188
     189
     190
     191
     192
     193
     194
     195
     196
     197
     198
     199
     200
     201
     202
     203
     204
     205
     206
     207
     208
     209
     210
     211
     212
     213
     214
     215
     216
     217
     218
     219
     220
     221
     222
     223
     224
     225
     226
     227
     228
     229
     230
     231
     232
     233
     234
     235
     236
     237
     238
     239
     240
     241
     242
     243
     244
     245
     246
     247
     248
     249
     250
     251
     252
     253
     254
     255
     256
     257
     258
     259
     260
     261
     262
     263
     264
     265
     266
     267
     268
     269
     270
     271
     272
     273
     274
     275
     276
     277
     278
     279
     280
      SUBROUTINE CLATRD( UPLO, N, NB, A, LDA, E, TAU, W, LDW )
*
*  -- LAPACK auxiliary routine (version 3.3.1) --
*  -- LAPACK is a software package provided by Univ. of Tennessee,    --
*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
*  -- April 2011                                                      --
*
*     .. Scalar Arguments ..
      CHARACTER          UPLO
      INTEGER            LDA, LDW, N, NB
*     ..
*     .. Array Arguments ..
      REAL               E( * )
      COMPLEX            A( LDA, * ), TAU( * ), W( LDW, * )
*     ..
*
*  Purpose
*  =======
*
*  CLATRD reduces NB rows and columns of a complex Hermitian matrix A to
*  Hermitian tridiagonal form by a unitary similarity
*  transformation Q**H * A * Q, and returns the matrices V and W which are
*  needed to apply the transformation to the unreduced part of A.
*
*  If UPLO = 'U', CLATRD reduces the last NB rows and columns of a
*  matrix, of which the upper triangle is supplied;
*  if UPLO = 'L', CLATRD reduces the first NB rows and columns of a
*  matrix, of which the lower triangle is supplied.
*
*  This is an auxiliary routine called by CHETRD.
*
*  Arguments
*  =========
*
*  UPLO    (input) CHARACTER*1
*          Specifies whether the upper or lower triangular part of the
*          Hermitian matrix A is stored:
*          = 'U': Upper triangular
*          = 'L': Lower triangular
*
*  N       (input) INTEGER
*          The order of the matrix A.
*
*  NB      (input) INTEGER
*          The number of rows and columns to be reduced.
*
*  A       (input/output) COMPLEX array, dimension (LDA,N)
*          On entry, the Hermitian matrix A.  If UPLO = 'U', the leading
*          n-by-n upper triangular part of A contains the upper
*          triangular part of the matrix A, and the strictly lower
*          triangular part of A is not referenced.  If UPLO = 'L', the
*          leading n-by-n lower triangular part of A contains the lower
*          triangular part of the matrix A, and the strictly upper
*          triangular part of A is not referenced.
*          On exit:
*          if UPLO = 'U', the last NB columns have been reduced to
*            tridiagonal form, with the diagonal elements overwriting
*            the diagonal elements of A; the elements above the diagonal
*            with the array TAU, represent the unitary matrix Q as a
*            product of elementary reflectors;
*          if UPLO = 'L', the first NB columns have been reduced to
*            tridiagonal form, with the diagonal elements overwriting
*            the diagonal elements of A; the elements below the diagonal
*            with the array TAU, represent the  unitary matrix Q as a
*            product of elementary reflectors.
*          See Further Details.
*
*  LDA     (input) INTEGER
*          The leading dimension of the array A.  LDA >= max(1,N).
*
*  E       (output) REAL array, dimension (N-1)
*          If UPLO = 'U', E(n-nb:n-1) contains the superdiagonal
*          elements of the last NB columns of the reduced matrix;
*          if UPLO = 'L', E(1:nb) contains the subdiagonal elements of
*          the first NB columns of the reduced matrix.
*
*  TAU     (output) COMPLEX array, dimension (N-1)
*          The scalar factors of the elementary reflectors, stored in
*          TAU(n-nb:n-1) if UPLO = 'U', and in TAU(1:nb) if UPLO = 'L'.
*          See Further Details.
*
*  W       (output) COMPLEX array, dimension (LDW,NB)
*          The n-by-nb matrix W required to update the unreduced part
*          of A.
*
*  LDW     (input) INTEGER
*          The leading dimension of the array W. LDW >= max(1,N).
*
*  Further Details
*  ===============
*
*  If UPLO = 'U', the matrix Q is represented as a product of elementary
*  reflectors
*
*     Q = H(n) H(n-1) . . . H(n-nb+1).
*
*  Each H(i) has the form
*
*     H(i) = I - tau * v * v**H
*
*  where tau is a complex scalar, and v is a complex vector with
*  v(i:n) = 0 and v(i-1) = 1; v(1:i-1) is stored on exit in A(1:i-1,i),
*  and tau in TAU(i-1).
*
*  If UPLO = 'L', the matrix Q is represented as a product of elementary
*  reflectors
*
*     Q = H(1) H(2) . . . H(nb).
*
*  Each H(i) has the form
*
*     H(i) = I - tau * v * v**H
*
*  where tau is a complex scalar, and v is a complex vector with
*  v(1:i) = 0 and v(i+1) = 1; v(i+1:n) is stored on exit in A(i+1:n,i),
*  and tau in TAU(i).
*
*  The elements of the vectors v together form the n-by-nb matrix V
*  which is needed, with W, to apply the transformation to the unreduced
*  part of the matrix, using a Hermitian rank-2k update of the form:
*  A := A - V*W**H - W*V**H.
*
*  The contents of A on exit are illustrated by the following examples
*  with n = 5 and nb = 2:
*
*  if UPLO = 'U':                       if UPLO = 'L':
*
*    (  a   a   a   v4  v5 )              (  d                  )
*    (      a   a   v4  v5 )              (  1   d              )
*    (          a   1   v5 )              (  v1  1   a          )
*    (              d   1  )              (  v1  v2  a   a      )
*    (                  d  )              (  v1  v2  a   a   a  )
*
*  where d denotes a diagonal element of the reduced matrix, a denotes
*  an element of the original matrix that is unchanged, and vi denotes
*  an element of the vector defining H(i).
*
*  =====================================================================
*
*     .. Parameters ..
      COMPLEX            ZERO, ONE, HALF
      PARAMETER          ( ZERO = ( 0.0E+00.0E+0 ),
     $                   ONE = ( 1.0E+00.0E+0 ),
     $                   HALF = ( 0.5E+00.0E+0 ) )
*     ..
*     .. Local Scalars ..
      INTEGER            I, IW
      COMPLEX            ALPHA
*     ..
*     .. External Subroutines ..
      EXTERNAL           CAXPY, CGEMV, CHEMV, CLACGV, CLARFG, CSCAL
*     ..
*     .. External Functions ..
      LOGICAL            LSAME
      COMPLEX            CDOTC
      EXTERNAL           LSAME, CDOTC
*     ..
*     .. Intrinsic Functions ..
      INTRINSIC          MIN, REAL
*     ..
*     .. Executable Statements ..
*
*     Quick return if possible
*
      IF( N.LE.0 )
     $   RETURN
*
      IF( LSAME( UPLO, 'U' ) ) THEN
*
*        Reduce last NB columns of upper triangle
*
         DO 10 I = N, N - NB + 1-1
            IW = I - N + NB
            IF( I.LT.N ) THEN
*
*              Update A(1:i,i)
*
               A( I, I ) = REAL( A( I, I ) )
               CALL CLACGV( N-I, W( I, IW+1 ), LDW )
               CALL CGEMV( 'No transpose', I, N-I, -ONE, A( 1, I+1 ),
     $                     LDA, W( I, IW+1 ), LDW, ONE, A( 1, I ), 1 )
               CALL CLACGV( N-I, W( I, IW+1 ), LDW )
               CALL CLACGV( N-I, A( I, I+1 ), LDA )
               CALL CGEMV( 'No transpose', I, N-I, -ONE, W( 1, IW+1 ),
     $                     LDW, A( I, I+1 ), LDA, ONE, A( 1, I ), 1 )
               CALL CLACGV( N-I, A( I, I+1 ), LDA )
               A( I, I ) = REAL( A( I, I ) )
            END IF
            IF( I.GT.1 ) THEN
*
*              Generate elementary reflector H(i) to annihilate
*              A(1:i-2,i)
*
               ALPHA = A( I-1, I )
               CALL CLARFG( I-1, ALPHA, A( 1, I ), 1, TAU( I-1 ) )
               E( I-1 ) = ALPHA
               A( I-1, I ) = ONE
*
*              Compute W(1:i-1,i)
*
               CALL CHEMV( 'Upper', I-1, ONE, A, LDA, A( 1, I ), 1,
     $                     ZERO, W( 1, IW ), 1 )
               IF( I.LT.N ) THEN
                  CALL CGEMV( 'Conjugate transpose', I-1, N-I, ONE,
     $                        W( 1, IW+1 ), LDW, A( 1, I ), 1, ZERO,
     $                        W( I+1, IW ), 1 )
                  CALL CGEMV( 'No transpose', I-1, N-I, -ONE,
     $                        A( 1, I+1 ), LDA, W( I+1, IW ), 1, ONE,
     $                        W( 1, IW ), 1 )
                  CALL CGEMV( 'Conjugate transpose', I-1, N-I, ONE,
     $                        A( 1, I+1 ), LDA, A( 1, I ), 1, ZERO,
     $                        W( I+1, IW ), 1 )
                  CALL CGEMV( 'No transpose', I-1, N-I, -ONE,
     $                        W( 1, IW+1 ), LDW, W( I+1, IW ), 1, ONE,
     $                        W( 1, IW ), 1 )
               END IF
               CALL CSCAL( I-1, TAU( I-1 ), W( 1, IW ), 1 )
               ALPHA = -HALF*TAU( I-1 )*CDOTC( I-1, W( 1, IW ), 1,
     $                 A( 1, I ), 1 )
               CALL CAXPY( I-1, ALPHA, A( 1, I ), 1, W( 1, IW ), 1 )
            END IF
*
   10    CONTINUE
      ELSE
*
*        Reduce first NB columns of lower triangle
*
         DO 20 I = 1, NB
*
*           Update A(i:n,i)
*
            A( I, I ) = REAL( A( I, I ) )
            CALL CLACGV( I-1, W( I, 1 ), LDW )
            CALL CGEMV( 'No transpose', N-I+1, I-1-ONE, A( I, 1 ),
     $                  LDA, W( I, 1 ), LDW, ONE, A( I, I ), 1 )
            CALL CLACGV( I-1, W( I, 1 ), LDW )
            CALL CLACGV( I-1, A( I, 1 ), LDA )
            CALL CGEMV( 'No transpose', N-I+1, I-1-ONE, W( I, 1 ),
     $                  LDW, A( I, 1 ), LDA, ONE, A( I, I ), 1 )
            CALL CLACGV( I-1, A( I, 1 ), LDA )
            A( I, I ) = REAL( A( I, I ) )
            IF( I.LT.N ) THEN
*
*              Generate elementary reflector H(i) to annihilate
*              A(i+2:n,i)
*
               ALPHA = A( I+1, I )
               CALL CLARFG( N-I, ALPHA, A( MIN( I+2, N ), I ), 1,
     $                      TAU( I ) )
               E( I ) = ALPHA
               A( I+1, I ) = ONE
*
*              Compute W(i+1:n,i)
*
               CALL CHEMV( 'Lower', N-I, ONE, A( I+1, I+1 ), LDA,
     $                     A( I+1, I ), 1, ZERO, W( I+1, I ), 1 )
               CALL CGEMV( 'Conjugate transpose', N-I, I-1, ONE,
     $                     W( I+11 ), LDW, A( I+1, I ), 1, ZERO,
     $                     W( 1, I ), 1 )
               CALL CGEMV( 'No transpose', N-I, I-1-ONE, A( I+11 ),
     $                     LDA, W( 1, I ), 1, ONE, W( I+1, I ), 1 )
               CALL CGEMV( 'Conjugate transpose', N-I, I-1, ONE,
     $                     A( I+11 ), LDA, A( I+1, I ), 1, ZERO,
     $                     W( 1, I ), 1 )
               CALL CGEMV( 'No transpose', N-I, I-1-ONE, W( I+11 ),
     $                     LDW, W( 1, I ), 1, ONE, W( I+1, I ), 1 )
               CALL CSCAL( N-I, TAU( I ), W( I+1, I ), 1 )
               ALPHA = -HALF*TAU( I )*CDOTC( N-I, W( I+1, I ), 1,
     $                 A( I+1, I ), 1 )
               CALL CAXPY( N-I, ALPHA, A( I+1, I ), 1, W( I+1, I ), 1 )
            END IF
*
   20    CONTINUE
      END IF
*
      RETURN
*
*     End of CLATRD
*
      END