1
       2
       3
       4
       5
       6
       7
       8
       9
      10
      11
      12
      13
      14
      15
      16
      17
      18
      19
      20
      21
      22
      23
      24
      25
      26
      27
      28
      29
      30
      31
      32
      33
      34
      35
      36
      37
      38
      39
      40
      41
      42
      43
      44
      45
      46
      47
      48
      49
      50
      51
      52
      53
      54
      55
      56
      57
      58
      59
      60
      61
      62
      63
      64
      65
      66
      67
      68
      69
      70
      71
      72
      73
      74
      75
      76
      77
      78
      79
      80
      81
      82
      83
      84
      85
      86
      87
      88
      89
      90
      91
      92
      93
      94
      95
      96
      97
      98
      99
     100
     101
     102
     103
     104
     105
     106
     107
     108
     109
     110
     111
     112
     113
     114
     115
     116
     117
     118
     119
     120
     121
     122
     123
     124
     125
     126
     127
     128
     129
     130
     131
     132
     133
     134
     135
     136
     137
     138
     139
     140
     141
     142
     143
     144
     145
     146
     147
     148
     149
     150
     151
     152
     153
     154
     155
     156
     157
     158
     159
     160
     161
     162
     163
     164
     165
     166
     167
     168
     169
     170
     171
     172
     173
     174
     175
     176
     177
     178
     179
     180
     181
     182
     183
     184
     185
     186
     187
     188
     189
     190
     191
     192
     193
     194
     195
     196
     197
     198
     199
     200
     201
     202
     203
     204
     205
     206
     207
     208
     209
     210
     211
     212
     213
     214
     215
     216
     217
     218
     219
     220
     221
     222
     223
     224
     225
     226
     227
     228
     229
     230
     231
     232
     233
     234
     235
     236
     237
     238
     239
     240
     241
     242
     243
     244
     245
     246
     247
     248
     249
     250
     251
     252
     253
     254
     255
     256
     257
     258
     259
     260
     261
     262
     263
     264
     265
     266
     267
     268
     269
     270
     271
     272
     273
     274
     275
     276
     277
     278
     279
     280
     281
     282
     283
     284
     285
     286
     287
     288
     289
     290
     291
     292
     293
     294
     295
     296
     297
     298
     299
     300
     301
     302
     303
     304
     305
     306
     307
     308
     309
     310
     311
     312
     313
     314
     315
     316
     317
     318
     319
     320
     321
     322
     323
     324
     325
     326
     327
     328
     329
     330
     331
     332
     333
     334
     335
     336
     337
     338
     339
     340
     341
     342
     343
     344
     345
     346
     347
     348
     349
     350
     351
     352
     353
     354
     355
     356
     357
     358
     359
     360
     361
     362
     363
     364
     365
     366
     367
     368
     369
     370
     371
     372
     373
     374
     375
     376
     377
     378
     379
     380
     381
     382
     383
     384
     385
     386
     387
     388
     389
     390
     391
     392
     393
     394
     395
     396
     397
     398
     399
     400
     401
     402
     403
     404
     405
     406
     407
     408
     409
     410
     411
     412
     413
     414
     415
     416
     417
     418
     419
     420
     421
     422
     423
     424
     425
     426
     427
     428
     429
     430
     431
     432
     433
     434
     435
     436
     437
     438
     439
     440
     441
     442
     443
     444
     445
     446
     447
     448
     449
     450
     451
     452
     453
     454
     455
     456
     457
     458
     459
     460
     461
     462
     463
     464
     465
     466
     467
     468
     469
     470
     471
     472
     473
     474
     475
     476
     477
     478
     479
     480
     481
     482
     483
     484
     485
     486
     487
     488
     489
     490
     491
     492
     493
     494
     495
     496
     497
     498
     499
     500
     501
     502
     503
     504
     505
     506
     507
     508
     509
     510
     511
     512
     513
     514
     515
     516
     517
     518
     519
     520
     521
     522
     523
     524
     525
     526
     527
     528
     529
     530
     531
     532
     533
     534
     535
     536
     537
     538
     539
     540
     541
     542
     543
     544
     545
     546
     547
     548
     549
     550
     551
     552
     553
     554
     555
     556
     557
     558
     559
     560
     561
     562
     563
     564
     565
     566
     567
     568
     569
     570
     571
     572
     573
     574
     575
     576
     577
     578
     579
     580
     581
     582
     583
     584
     585
     586
     587
     588
     589
     590
     591
     592
     593
     594
     595
     596
     597
     598
     599
     600
     601
     602
     603
     604
     605
     606
     607
     608
     609
     610
     611
     612
     613
     614
     615
     616
     617
     618
     619
     620
     621
     622
     623
     624
     625
     626
     627
     628
     629
     630
     631
     632
     633
     634
      SUBROUTINE CTGEVC( SIDE, HOWMNY, SELECT, N, S, LDS, P, LDP, VL,
     $                   LDVL, VR, LDVR, MM, M, WORK, RWORK, INFO )
*
*  -- LAPACK routine (version 3.2) --
*  -- LAPACK is a software package provided by Univ. of Tennessee,    --
*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
*     November 2006
*
*     .. Scalar Arguments ..
      CHARACTER          HOWMNY, SIDE
      INTEGER            INFO, LDP, LDS, LDVL, LDVR, M, MM, N
*     ..
*     .. Array Arguments ..
      LOGICAL            SELECT* )
      REAL               RWORK( * )
      COMPLEX            P( LDP, * ), S( LDS, * ), VL( LDVL, * ),
     $                   VR( LDVR, * ), WORK( * )
*     ..
*
*
*  Purpose
*  =======
*
*  CTGEVC computes some or all of the right and/or left eigenvectors of
*  a pair of complex matrices (S,P), where S and P are upper triangular.
*  Matrix pairs of this type are produced by the generalized Schur
*  factorization of a complex matrix pair (A,B):
*  
*     A = Q*S*Z**H,  B = Q*P*Z**H
*  
*  as computed by CGGHRD + CHGEQZ.
*  
*  The right eigenvector x and the left eigenvector y of (S,P)
*  corresponding to an eigenvalue w are defined by:
*  
*     S*x = w*P*x,  (y**H)*S = w*(y**H)*P,
*  
*  where y**H denotes the conjugate tranpose of y.
*  The eigenvalues are not input to this routine, but are computed
*  directly from the diagonal elements of S and P.
*  
*  This routine returns the matrices X and/or Y of right and left
*  eigenvectors of (S,P), or the products Z*X and/or Q*Y,
*  where Z and Q are input matrices.
*  If Q and Z are the unitary factors from the generalized Schur
*  factorization of a matrix pair (A,B), then Z*X and Q*Y
*  are the matrices of right and left eigenvectors of (A,B).
*
*  Arguments
*  =========
*
*  SIDE    (input) CHARACTER*1
*          = 'R': compute right eigenvectors only;
*          = 'L': compute left eigenvectors only;
*          = 'B': compute both right and left eigenvectors.
*
*  HOWMNY  (input) CHARACTER*1
*          = 'A': compute all right and/or left eigenvectors;
*          = 'B': compute all right and/or left eigenvectors,
*                 backtransformed by the matrices in VR and/or VL;
*          = 'S': compute selected right and/or left eigenvectors,
*                 specified by the logical array SELECT.
*
*  SELECT  (input) LOGICAL array, dimension (N)
*          If HOWMNY='S', SELECT specifies the eigenvectors to be
*          computed.  The eigenvector corresponding to the j-th
*          eigenvalue is computed if SELECT(j) = .TRUE..
*          Not referenced if HOWMNY = 'A' or 'B'.
*
*  N       (input) INTEGER
*          The order of the matrices S and P.  N >= 0.
*
*  S       (input) COMPLEX array, dimension (LDS,N)
*          The upper triangular matrix S from a generalized Schur
*          factorization, as computed by CHGEQZ.
*
*  LDS     (input) INTEGER
*          The leading dimension of array S.  LDS >= max(1,N).
*
*  P       (input) COMPLEX array, dimension (LDP,N)
*          The upper triangular matrix P from a generalized Schur
*          factorization, as computed by CHGEQZ.  P must have real
*          diagonal elements.
*
*  LDP     (input) INTEGER
*          The leading dimension of array P.  LDP >= max(1,N).
*
*  VL      (input/output) COMPLEX array, dimension (LDVL,MM)
*          On entry, if SIDE = 'L' or 'B' and HOWMNY = 'B', VL must
*          contain an N-by-N matrix Q (usually the unitary matrix Q
*          of left Schur vectors returned by CHGEQZ).
*          On exit, if SIDE = 'L' or 'B', VL contains:
*          if HOWMNY = 'A', the matrix Y of left eigenvectors of (S,P);
*          if HOWMNY = 'B', the matrix Q*Y;
*          if HOWMNY = 'S', the left eigenvectors of (S,P) specified by
*                      SELECT, stored consecutively in the columns of
*                      VL, in the same order as their eigenvalues.
*          Not referenced if SIDE = 'R'.
*
*  LDVL    (input) INTEGER
*          The leading dimension of array VL.  LDVL >= 1, and if
*          SIDE = 'L' or 'l' or 'B' or 'b', LDVL >= N.
*
*  VR      (input/output) COMPLEX array, dimension (LDVR,MM)
*          On entry, if SIDE = 'R' or 'B' and HOWMNY = 'B', VR must
*          contain an N-by-N matrix Q (usually the unitary matrix Z
*          of right Schur vectors returned by CHGEQZ).
*          On exit, if SIDE = 'R' or 'B', VR contains:
*          if HOWMNY = 'A', the matrix X of right eigenvectors of (S,P);
*          if HOWMNY = 'B', the matrix Z*X;
*          if HOWMNY = 'S', the right eigenvectors of (S,P) specified by
*                      SELECT, stored consecutively in the columns of
*                      VR, in the same order as their eigenvalues.
*          Not referenced if SIDE = 'L'.
*
*  LDVR    (input) INTEGER
*          The leading dimension of the array VR.  LDVR >= 1, and if
*          SIDE = 'R' or 'B', LDVR >= N.
*
*  MM      (input) INTEGER
*          The number of columns in the arrays VL and/or VR. MM >= M.
*
*  M       (output) INTEGER
*          The number of columns in the arrays VL and/or VR actually
*          used to store the eigenvectors.  If HOWMNY = 'A' or 'B', M
*          is set to N.  Each selected eigenvector occupies one column.
*
*  WORK    (workspace) COMPLEX array, dimension (2*N)
*
*  RWORK   (workspace) REAL array, dimension (2*N)
*
*  INFO    (output) INTEGER
*          = 0:  successful exit.
*          < 0:  if INFO = -i, the i-th argument had an illegal value.
*
*  =====================================================================
*
*     .. Parameters ..
      REAL               ZERO, ONE
      PARAMETER          ( ZERO = 0.0E+0, ONE = 1.0E+0 )
      COMPLEX            CZERO, CONE
      PARAMETER          ( CZERO = ( 0.0E+00.0E+0 ),
     $                   CONE = ( 1.0E+00.0E+0 ) )
*     ..
*     .. Local Scalars ..
      LOGICAL            COMPL, COMPR, ILALL, ILBACK, ILBBAD, ILCOMP,
     $                   LSA, LSB
      INTEGER            I, IBEG, IEIG, IEND, IHWMNY, IM, ISIDE, ISRC,
     $                   J, JE, JR
      REAL               ACOEFA, ACOEFF, ANORM, ASCALE, BCOEFA, BIG,
     $                   BIGNUM, BNORM, BSCALE, DMIN, SAFMIN, SBETA,
     $                   SCALE, SMALL, TEMP, ULP, XMAX
      COMPLEX            BCOEFF, CA, CB, D, SALPHA, SUM, SUMA, SUMB, X
*     ..
*     .. External Functions ..
      LOGICAL            LSAME
      REAL               SLAMCH
      COMPLEX            CLADIV
      EXTERNAL           LSAME, SLAMCH, CLADIV
*     ..
*     .. External Subroutines ..
      EXTERNAL           CGEMV, SLABAD, XERBLA
*     ..
*     .. Intrinsic Functions ..
      INTRINSIC          ABSAIMAGCMPLXCONJGMAXMIN, REAL
*     ..
*     .. Statement Functions ..
      REAL               ABS1
*     ..
*     .. Statement Function definitions ..
      ABS1( X ) = ABSREAL( X ) ) + ABSAIMAG( X ) )
*     ..
*     .. Executable Statements ..
*
*     Decode and Test the input parameters
*
      IF( LSAME( HOWMNY, 'A' ) ) THEN
         IHWMNY = 1
         ILALL = .TRUE.
         ILBACK = .FALSE.
      ELSE IF( LSAME( HOWMNY, 'S' ) ) THEN
         IHWMNY = 2
         ILALL = .FALSE.
         ILBACK = .FALSE.
      ELSE IF( LSAME( HOWMNY, 'B' ) ) THEN
         IHWMNY = 3
         ILALL = .TRUE.
         ILBACK = .TRUE.
      ELSE
         IHWMNY = -1
      END IF
*
      IF( LSAME( SIDE, 'R' ) ) THEN
         ISIDE = 1
         COMPL = .FALSE.
         COMPR = .TRUE.
      ELSE IF( LSAME( SIDE, 'L' ) ) THEN
         ISIDE = 2
         COMPL = .TRUE.
         COMPR = .FALSE.
      ELSE IF( LSAME( SIDE, 'B' ) ) THEN
         ISIDE = 3
         COMPL = .TRUE.
         COMPR = .TRUE.
      ELSE
         ISIDE = -1
      END IF
*
      INFO = 0
      IF( ISIDE.LT.0 ) THEN
         INFO = -1
      ELSE IF( IHWMNY.LT.0 ) THEN
         INFO = -2
      ELSE IF( N.LT.0 ) THEN
         INFO = -4
      ELSE IF( LDS.LT.MAX1, N ) ) THEN
         INFO = -6
      ELSE IF( LDP.LT.MAX1, N ) ) THEN
         INFO = -8
      END IF
      IF( INFO.NE.0 ) THEN
         CALL XERBLA( 'CTGEVC'-INFO )
         RETURN
      END IF
*
*     Count the number of eigenvectors
*
      IF.NOT.ILALL ) THEN
         IM = 0
         DO 10 J = 1, N
            IFSELECT( J ) )
     $         IM = IM + 1
   10    CONTINUE
      ELSE
         IM = N
      END IF
*
*     Check diagonal of B
*
      ILBBAD = .FALSE.
      DO 20 J = 1, N
         IFAIMAG( P( J, J ) ).NE.ZERO )
     $      ILBBAD = .TRUE.
   20 CONTINUE
*
      IF( ILBBAD ) THEN
         INFO = -7
      ELSE IF( COMPL .AND. LDVL.LT..OR. LDVL.LT.1 ) THEN
         INFO = -10
      ELSE IF( COMPR .AND. LDVR.LT..OR. LDVR.LT.1 ) THEN
         INFO = -12
      ELSE IF( MM.LT.IM ) THEN
         INFO = -13
      END IF
      IF( INFO.NE.0 ) THEN
         CALL XERBLA( 'CTGEVC'-INFO )
         RETURN
      END IF
*
*     Quick return if possible
*
      M = IM
      IF( N.EQ.0 )
     $   RETURN
*
*     Machine Constants
*
      SAFMIN = SLAMCH( 'Safe minimum' )
      BIG = ONE / SAFMIN
      CALL SLABAD( SAFMIN, BIG )
      ULP = SLAMCH( 'Epsilon' )*SLAMCH( 'Base' )
      SMALL = SAFMIN*/ ULP
      BIG = ONE / SMALL
      BIGNUM = ONE / ( SAFMIN*N )
*
*     Compute the 1-norm of each column of the strictly upper triangular
*     part of A and B to check for possible overflow in the triangular
*     solver.
*
      ANORM = ABS1( S( 11 ) )
      BNORM = ABS1( P( 11 ) )
      RWORK( 1 ) = ZERO
      RWORK( N+1 ) = ZERO
      DO 40 J = 2, N
         RWORK( J ) = ZERO
         RWORK( N+J ) = ZERO
         DO 30 I = 1, J - 1
            RWORK( J ) = RWORK( J ) + ABS1( S( I, J ) )
            RWORK( N+J ) = RWORK( N+J ) + ABS1( P( I, J ) )
   30    CONTINUE
         ANORM = MAX( ANORM, RWORK( J )+ABS1( S( J, J ) ) )
         BNORM = MAX( BNORM, RWORK( N+J )+ABS1( P( J, J ) ) )
   40 CONTINUE
*
      ASCALE = ONE / MAX( ANORM, SAFMIN )
      BSCALE = ONE / MAX( BNORM, SAFMIN )
*
*     Left eigenvectors
*
      IF( COMPL ) THEN
         IEIG = 0
*
*        Main loop over eigenvalues
*
         DO 140 JE = 1, N
            IF( ILALL ) THEN
               ILCOMP = .TRUE.
            ELSE
               ILCOMP = SELECT( JE )
            END IF
            IF( ILCOMP ) THEN
               IEIG = IEIG + 1
*
               IF( ABS1( S( JE, JE ) ).LE.SAFMIN .AND.
     $             ABSREAL( P( JE, JE ) ) ).LE.SAFMIN ) THEN
*
*                 Singular matrix pencil -- return unit eigenvector
*
                  DO 50 JR = 1, N
                     VL( JR, IEIG ) = CZERO
   50             CONTINUE
                  VL( IEIG, IEIG ) = CONE
                  GO TO 140
               END IF
*
*              Non-singular eigenvalue:
*              Compute coefficients  a  and  b  in
*                   H
*                 y  ( a A - b B ) = 0
*
               TEMP = ONE / MAX( ABS1( S( JE, JE ) )*ASCALE,
     $                ABSREAL( P( JE, JE ) ) )*BSCALE, SAFMIN )
               SALPHA = ( TEMP*S( JE, JE ) )*ASCALE
               SBETA = ( TEMP*REAL( P( JE, JE ) ) )*BSCALE
               ACOEFF = SBETA*ASCALE
               BCOEFF = SALPHA*BSCALE
*
*              Scale to avoid underflow
*
               LSA = ABS( SBETA ).GE.SAFMIN .AND. ABS( ACOEFF ).LT.SMALL
               LSB = ABS1( SALPHA ).GE.SAFMIN .AND. ABS1( BCOEFF ).LT.
     $               SMALL
*
               SCALE = ONE
               IF( LSA )
     $            SCALE = ( SMALL / ABS( SBETA ) )*MIN( ANORM, BIG )
               IF( LSB )
     $            SCALE = MAXSCALE, ( SMALL / ABS1( SALPHA ) )*
     $                    MIN( BNORM, BIG ) )
               IF( LSA .OR. LSB ) THEN
                  SCALE = MINSCALE, ONE /
     $                    ( SAFMIN*MAX( ONE, ABS( ACOEFF ),
     $                    ABS1( BCOEFF ) ) ) )
                  IF( LSA ) THEN
                     ACOEFF = ASCALE*SCALE*SBETA )
                  ELSE
                     ACOEFF = SCALE*ACOEFF
                  END IF
                  IF( LSB ) THEN
                     BCOEFF = BSCALE*SCALE*SALPHA )
                  ELSE
                     BCOEFF = SCALE*BCOEFF
                  END IF
               END IF
*
               ACOEFA = ABS( ACOEFF )
               BCOEFA = ABS1( BCOEFF )
               XMAX = ONE
               DO 60 JR = 1, N
                  WORK( JR ) = CZERO
   60          CONTINUE
               WORK( JE ) = CONE
               DMIN = MAX( ULP*ACOEFA*ANORM, ULP*BCOEFA*BNORM, SAFMIN )
*
*                                              H
*              Triangular solve of  (a A - b B)  y = 0
*
*                                      H
*              (rowwise in  (a A - b B) , or columnwise in a A - b B)
*
               DO 100 J = JE + 1, N
*
*                 Compute
*                       j-1
*                 SUM = sum  conjg( a*S(k,j) - b*P(k,j) )*x(k)
*                       k=je
*                 (Scale if necessary)
*
                  TEMP = ONE / XMAX
                  IF( ACOEFA*RWORK( J )+BCOEFA*RWORK( N+J ).GT.BIGNUM*
     $                TEMP ) THEN
                     DO 70 JR = JE, J - 1
                        WORK( JR ) = TEMP*WORK( JR )
   70                CONTINUE
                     XMAX = ONE
                  END IF
                  SUMA = CZERO
                  SUMB = CZERO
*
                  DO 80 JR = JE, J - 1
                     SUMA = SUMA + CONJG( S( JR, J ) )*WORK( JR )
                     SUMB = SUMB + CONJG( P( JR, J ) )*WORK( JR )
   80             CONTINUE
                  SUM = ACOEFF*SUMA - CONJG( BCOEFF )*SUMB
*
*                 Form x(j) = - SUM / conjg( a*S(j,j) - b*P(j,j) )
*
*                 with scaling and perturbation of the denominator
*
                  D = CONJG( ACOEFF*S( J, J )-BCOEFF*P( J, J ) )
                  IF( ABS1( D ).LE.DMIN )
     $               D = CMPLX( DMIN )
*
                  IF( ABS1( D ).LT.ONE ) THEN
                     IF( ABS1( SUM ).GE.BIGNUM*ABS1( D ) ) THEN
                        TEMP = ONE / ABS1( SUM )
                        DO 90 JR = JE, J - 1
                           WORK( JR ) = TEMP*WORK( JR )
   90                   CONTINUE
                        XMAX = TEMP*XMAX
                        SUM = TEMP*SUM
                     END IF
                  END IF
                  WORK( J ) = CLADIV( -SUM, D )
                  XMAX = MAX( XMAX, ABS1( WORK( J ) ) )
  100          CONTINUE
*
*              Back transform eigenvector if HOWMNY='B'.
*
               IF( ILBACK ) THEN
                  CALL CGEMV( 'N', N, N+1-JE, CONE, VL( 1, JE ), LDVL,
     $                        WORK( JE ), 1, CZERO, WORK( N+1 ), 1 )
                  ISRC = 2
                  IBEG = 1
               ELSE
                  ISRC = 1
                  IBEG = JE
               END IF
*
*              Copy and scale eigenvector into column of VL
*
               XMAX = ZERO
               DO 110 JR = IBEG, N
                  XMAX = MAX( XMAX, ABS1( WORK( ( ISRC-1 )*N+JR ) ) )
  110          CONTINUE
*
               IF( XMAX.GT.SAFMIN ) THEN
                  TEMP = ONE / XMAX
                  DO 120 JR = IBEG, N
                     VL( JR, IEIG ) = TEMP*WORK( ( ISRC-1 )*N+JR )
  120             CONTINUE
               ELSE
                  IBEG = N + 1
               END IF
*
               DO 130 JR = 1, IBEG - 1
                  VL( JR, IEIG ) = CZERO
  130          CONTINUE
*
            END IF
  140    CONTINUE
      END IF
*
*     Right eigenvectors
*
      IF( COMPR ) THEN
         IEIG = IM + 1
*
*        Main loop over eigenvalues
*
         DO 250 JE = N, 1-1
            IF( ILALL ) THEN
               ILCOMP = .TRUE.
            ELSE
               ILCOMP = SELECT( JE )
            END IF
            IF( ILCOMP ) THEN
               IEIG = IEIG - 1
*
               IF( ABS1( S( JE, JE ) ).LE.SAFMIN .AND.
     $             ABSREAL( P( JE, JE ) ) ).LE.SAFMIN ) THEN
*
*                 Singular matrix pencil -- return unit eigenvector
*
                  DO 150 JR = 1, N
                     VR( JR, IEIG ) = CZERO
  150             CONTINUE
                  VR( IEIG, IEIG ) = CONE
                  GO TO 250
               END IF
*
*              Non-singular eigenvalue:
*              Compute coefficients  a  and  b  in
*
*              ( a A - b B ) x  = 0
*
               TEMP = ONE / MAX( ABS1( S( JE, JE ) )*ASCALE,
     $                ABSREAL( P( JE, JE ) ) )*BSCALE, SAFMIN )
               SALPHA = ( TEMP*S( JE, JE ) )*ASCALE
               SBETA = ( TEMP*REAL( P( JE, JE ) ) )*BSCALE
               ACOEFF = SBETA*ASCALE
               BCOEFF = SALPHA*BSCALE
*
*              Scale to avoid underflow
*
               LSA = ABS( SBETA ).GE.SAFMIN .AND. ABS( ACOEFF ).LT.SMALL
               LSB = ABS1( SALPHA ).GE.SAFMIN .AND. ABS1( BCOEFF ).LT.
     $               SMALL
*
               SCALE = ONE
               IF( LSA )
     $            SCALE = ( SMALL / ABS( SBETA ) )*MIN( ANORM, BIG )
               IF( LSB )
     $            SCALE = MAXSCALE, ( SMALL / ABS1( SALPHA ) )*
     $                    MIN( BNORM, BIG ) )
               IF( LSA .OR. LSB ) THEN
                  SCALE = MINSCALE, ONE /
     $                    ( SAFMIN*MAX( ONE, ABS( ACOEFF ),
     $                    ABS1( BCOEFF ) ) ) )
                  IF( LSA ) THEN
                     ACOEFF = ASCALE*SCALE*SBETA )
                  ELSE
                     ACOEFF = SCALE*ACOEFF
                  END IF
                  IF( LSB ) THEN
                     BCOEFF = BSCALE*SCALE*SALPHA )
                  ELSE
                     BCOEFF = SCALE*BCOEFF
                  END IF
               END IF
*
               ACOEFA = ABS( ACOEFF )
               BCOEFA = ABS1( BCOEFF )
               XMAX = ONE
               DO 160 JR = 1, N
                  WORK( JR ) = CZERO
  160          CONTINUE
               WORK( JE ) = CONE
               DMIN = MAX( ULP*ACOEFA*ANORM, ULP*BCOEFA*BNORM, SAFMIN )
*
*              Triangular solve of  (a A - b B) x = 0  (columnwise)
*
*              WORK(1:j-1) contains sums w,
*              WORK(j+1:JE) contains x
*
               DO 170 JR = 1, JE - 1
                  WORK( JR ) = ACOEFF*S( JR, JE ) - BCOEFF*P( JR, JE )
  170          CONTINUE
               WORK( JE ) = CONE
*
               DO 210 J = JE - 11-1
*
*                 Form x(j) := - w(j) / d
*                 with scaling and perturbation of the denominator
*
                  D = ACOEFF*S( J, J ) - BCOEFF*P( J, J )
                  IF( ABS1( D ).LE.DMIN )
     $               D = CMPLX( DMIN )
*
                  IF( ABS1( D ).LT.ONE ) THEN
                     IF( ABS1( WORK( J ) ).GE.BIGNUM*ABS1( D ) ) THEN
                        TEMP = ONE / ABS1( WORK( J ) )
                        DO 180 JR = 1, JE
                           WORK( JR ) = TEMP*WORK( JR )
  180                   CONTINUE
                     END IF
                  END IF
*
                  WORK( J ) = CLADIV( -WORK( J ), D )
*
                  IF( J.GT.1 ) THEN
*
*                    w = w + x(j)*(a S(*,j) - b P(*,j) ) with scaling
*
                     IF( ABS1( WORK( J ) ).GT.ONE ) THEN
                        TEMP = ONE / ABS1( WORK( J ) )
                        IF( ACOEFA*RWORK( J )+BCOEFA*RWORK( N+J ).GE.
     $                      BIGNUM*TEMP ) THEN
                           DO 190 JR = 1, JE
                              WORK( JR ) = TEMP*WORK( JR )
  190                      CONTINUE
                        END IF
                     END IF
*
                     CA = ACOEFF*WORK( J )
                     CB = BCOEFF*WORK( J )
                     DO 200 JR = 1, J - 1
                        WORK( JR ) = WORK( JR ) + CA*S( JR, J ) -
     $                               CB*P( JR, J )
  200                CONTINUE
                  END IF
  210          CONTINUE
*
*              Back transform eigenvector if HOWMNY='B'.
*
               IF( ILBACK ) THEN
                  CALL CGEMV( 'N', N, JE, CONE, VR, LDVR, WORK, 1,
     $                        CZERO, WORK( N+1 ), 1 )
                  ISRC = 2
                  IEND = N
               ELSE
                  ISRC = 1
                  IEND = JE
               END IF
*
*              Copy and scale eigenvector into column of VR
*
               XMAX = ZERO
               DO 220 JR = 1, IEND
                  XMAX = MAX( XMAX, ABS1( WORK( ( ISRC-1 )*N+JR ) ) )
  220          CONTINUE
*
               IF( XMAX.GT.SAFMIN ) THEN
                  TEMP = ONE / XMAX
                  DO 230 JR = 1, IEND
                     VR( JR, IEIG ) = TEMP*WORK( ( ISRC-1 )*N+JR )
  230             CONTINUE
               ELSE
                  IEND = 0
               END IF
*
               DO 240 JR = IEND + 1, N
                  VR( JR, IEIG ) = CZERO
  240          CONTINUE
*
            END IF
  250    CONTINUE
      END IF
*
      RETURN
*
*     End of CTGEVC
*
      END