1
       2
       3
       4
       5
       6
       7
       8
       9
      10
      11
      12
      13
      14
      15
      16
      17
      18
      19
      20
      21
      22
      23
      24
      25
      26
      27
      28
      29
      30
      31
      32
      33
      34
      35
      36
      37
      38
      39
      40
      41
      42
      43
      44
      45
      46
      47
      48
      49
      50
      51
      52
      53
      54
      55
      56
      57
      58
      59
      60
      61
      62
      63
      64
      65
      66
      67
      68
      69
      70
      71
      72
      73
      74
      75
      76
      77
      78
      79
      80
      81
      82
      83
      84
      85
      86
      87
      88
      89
      90
      91
      92
      93
      94
      95
      96
      97
      98
      99
     100
     101
     102
     103
     104
     105
     106
     107
     108
     109
     110
     111
     112
     113
     114
     115
     116
     117
     118
     119
     120
     121
     122
     123
     124
     125
     126
     127
     128
     129
     130
     131
     132
     133
     134
     135
     136
     137
     138
     139
     140
     141
     142
     143
     144
     145
     146
     147
     148
     149
     150
     151
     152
     153
     154
     155
     156
     157
     158
     159
     160
     161
     162
     163
     164
     165
     166
     167
     168
     169
     170
     171
     172
     173
     174
     175
     176
     177
     178
     179
     180
     181
     182
     183
     184
     185
     186
     187
     188
     189
     190
     191
     192
     193
     194
     195
     196
     197
     198
     199
     200
     201
     202
     203
     204
     205
     206
     207
     208
     209
     210
     211
     212
     213
     214
     215
     216
     217
     218
     219
     220
     221
     222
     223
     224
     225
     226
     227
     228
     229
     230
     231
     232
     233
     234
     235
     236
     237
     238
     239
     240
     241
     242
     243
     244
     245
     246
     247
     248
     249
     250
     251
     252
     253
     254
     255
     256
     257
     258
     259
     260
     261
     262
     263
     264
     265
     266
     267
     268
     269
     270
     271
     272
     273
     274
     275
     276
     277
     278
     279
     280
     281
     282
     283
     284
     285
     286
     287
     288
     289
     290
     291
     292
     293
     294
     295
     296
     297
     298
     299
     300
     301
     302
     303
     304
     305
     306
     307
     308
     309
     310
     311
     312
     313
     314
     315
     316
     317
     318
     319
     320
     321
     322
     323
     324
     325
     326
     327
     328
     329
     330
     331
     332
     333
     334
     335
     336
     337
     338
     339
     340
     341
     342
     343
     344
     345
     346
     347
     348
     349
     350
     351
     352
     353
     354
     355
     356
     357
     358
     359
     360
     361
     362
     363
     364
     365
     366
     367
     368
     369
     370
     371
     372
     373
     374
     375
     376
     377
     378
     379
     380
     381
     382
     383
     384
     385
     386
     387
     388
     389
     390
     391
     392
     393
     394
     395
     396
     397
     398
     399
     400
     401
     402
     403
     404
     405
     406
     407
     408
     409
     410
     411
     412
     413
     414
     415
     416
     417
     418
     419
     420
     421
     422
     423
     424
     425
     426
     427
     428
     429
     430
     431
     432
     433
     434
     435
     436
     437
     438
     439
     440
     441
     442
     443
     444
     445
     446
     447
     448
     449
     450
     451
     452
     453
     454
     455
     456
     457
     458
     459
     460
     461
     462
     463
     464
     465
     466
     467
     468
     469
     470
     471
     472
     473
     474
     475
     476
     477
     478
     479
     480
     481
     482
     483
     484
     485
     486
     487
     488
     489
     490
     491
     492
     493
     494
     495
     496
     497
     498
     499
     500
     501
     502
     503
     504
     505
     506
     507
     508
     509
     510
     511
     512
     513
     514
     515
     516
     517
     518
     519
     520
     521
     522
     523
     524
     525
     526
     527
     528
     529
     530
     531
     532
     533
     534
     535
     536
     537
     538
     539
     540
     541
     542
     543
     544
     545
     546
     547
     548
     549
     550
     551
     552
     553
     554
     555
     556
     557
     558
     559
     560
     561
     562
     563
     564
     565
     566
     567
     568
     569
     570
     571
     572
     573
     574
     575
     576
     577
     578
     579
     580
     581
     582
     583
     584
     585
     586
     587
     588
     589
     590
     591
     592
     593
     594
     595
     596
     597
     598
     599
     600
     601
     602
     603
     604
     605
     606
     607
     608
     609
     610
     611
     612
     613
     614
     615
     616
     617
     618
     619
     620
     621
     622
     623
     624
     625
     626
     627
     628
     629
     630
     631
     632
     633
     634
     635
     636
     637
     638
     639
     640
     641
     642
     643
     644
     645
     646
     647
     648
     649
      SUBROUTINE CTGSEN( IJOB, WANTQ, WANTZ, SELECT, N, A, LDA, B, LDB,
     $                   ALPHA, BETA, Q, LDQ, Z, LDZ, M, PL, PR, DIF,
     $                   WORK, LWORK, IWORK, LIWORK, INFO )
*
*  -- LAPACK routine (version 3.3.1) --
*  -- LAPACK is a software package provided by Univ. of Tennessee,    --
*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
*  -- April 2011                                                      --
*
*     Modified to call CLACN2 in place of CLACON, 10 Feb 03, SJH.
*
*     .. Scalar Arguments ..
      LOGICAL            WANTQ, WANTZ
      INTEGER            IJOB, INFO, LDA, LDB, LDQ, LDZ, LIWORK, LWORK,
     $                   M, N
      REAL               PL, PR
*     ..
*     .. Array Arguments ..
      LOGICAL            SELECT* )
      INTEGER            IWORK( * )
      REAL               DIF( * )
      COMPLEX            A( LDA, * ), ALPHA( * ), B( LDB, * ),
     $                   BETA( * ), Q( LDQ, * ), WORK( * ), Z( LDZ, * )
*     ..
*
*  Purpose
*  =======
*
*  CTGSEN reorders the generalized Schur decomposition of a complex
*  matrix pair (A, B) (in terms of an unitary equivalence trans-
*  formation Q**H * (A, B) * Z), so that a selected cluster of eigenvalues
*  appears in the leading diagonal blocks of the pair (A,B). The leading
*  columns of Q and Z form unitary bases of the corresponding left and
*  right eigenspaces (deflating subspaces). (A, B) must be in
*  generalized Schur canonical form, that is, A and B are both upper
*  triangular.
*
*  CTGSEN also computes the generalized eigenvalues
*
*           w(j)= ALPHA(j) / BETA(j)
*
*  of the reordered matrix pair (A, B).
*
*  Optionally, the routine computes estimates of reciprocal condition
*  numbers for eigenvalues and eigenspaces. These are Difu[(A11,B11),
*  (A22,B22)] and Difl[(A11,B11), (A22,B22)], i.e. the separation(s)
*  between the matrix pairs (A11, B11) and (A22,B22) that correspond to
*  the selected cluster and the eigenvalues outside the cluster, resp.,
*  and norms of "projections" onto left and right eigenspaces w.r.t.
*  the selected cluster in the (1,1)-block.
*
*
*  Arguments
*  =========
*
*  IJOB    (input) integer
*          Specifies whether condition numbers are required for the
*          cluster of eigenvalues (PL and PR) or the deflating subspaces
*          (Difu and Difl):
*           =0: Only reorder w.r.t. SELECT. No extras.
*           =1: Reciprocal of norms of "projections" onto left and right
*               eigenspaces w.r.t. the selected cluster (PL and PR).
*           =2: Upper bounds on Difu and Difl. F-norm-based estimate
*               (DIF(1:2)).
*           =3: Estimate of Difu and Difl. 1-norm-based estimate
*               (DIF(1:2)).
*               About 5 times as expensive as IJOB = 2.
*           =4: Compute PL, PR and DIF (i.e. 0, 1 and 2 above): Economic
*               version to get it all.
*           =5: Compute PL, PR and DIF (i.e. 0, 1 and 3 above)
*
*  WANTQ   (input) LOGICAL
*          .TRUE. : update the left transformation matrix Q;
*          .FALSE.: do not update Q.
*
*  WANTZ   (input) LOGICAL
*          .TRUE. : update the right transformation matrix Z;
*          .FALSE.: do not update Z.
*
*  SELECT  (input) LOGICAL array, dimension (N)
*          SELECT specifies the eigenvalues in the selected cluster. To
*          select an eigenvalue w(j), SELECT(j) must be set to
*          .TRUE..
*
*  N       (input) INTEGER
*          The order of the matrices A and B. N >= 0.
*
*  A       (input/output) COMPLEX array, dimension(LDA,N)
*          On entry, the upper triangular matrix A, in generalized
*          Schur canonical form.
*          On exit, A is overwritten by the reordered matrix A.
*
*  LDA     (input) INTEGER
*          The leading dimension of the array A. LDA >= max(1,N).
*
*  B       (input/output) COMPLEX array, dimension(LDB,N)
*          On entry, the upper triangular matrix B, in generalized
*          Schur canonical form.
*          On exit, B is overwritten by the reordered matrix B.
*
*  LDB     (input) INTEGER
*          The leading dimension of the array B. LDB >= max(1,N).
*
*  ALPHA   (output) COMPLEX array, dimension (N)
*  BETA    (output) COMPLEX array, dimension (N)
*          The diagonal elements of A and B, respectively,
*          when the pair (A,B) has been reduced to generalized Schur
*          form.  ALPHA(i)/BETA(i) i=1,...,N are the generalized
*          eigenvalues.
*
*  Q       (input/output) COMPLEX array, dimension (LDQ,N)
*          On entry, if WANTQ = .TRUE., Q is an N-by-N matrix.
*          On exit, Q has been postmultiplied by the left unitary
*          transformation matrix which reorder (A, B); The leading M
*          columns of Q form orthonormal bases for the specified pair of
*          left eigenspaces (deflating subspaces).
*          If WANTQ = .FALSE., Q is not referenced.
*
*  LDQ     (input) INTEGER
*          The leading dimension of the array Q. LDQ >= 1.
*          If WANTQ = .TRUE., LDQ >= N.
*
*  Z       (input/output) COMPLEX array, dimension (LDZ,N)
*          On entry, if WANTZ = .TRUE., Z is an N-by-N matrix.
*          On exit, Z has been postmultiplied by the left unitary
*          transformation matrix which reorder (A, B); The leading M
*          columns of Z form orthonormal bases for the specified pair of
*          left eigenspaces (deflating subspaces).
*          If WANTZ = .FALSE., Z is not referenced.
*
*  LDZ     (input) INTEGER
*          The leading dimension of the array Z. LDZ >= 1.
*          If WANTZ = .TRUE., LDZ >= N.
*
*  M       (output) INTEGER
*          The dimension of the specified pair of left and right
*          eigenspaces, (deflating subspaces) 0 <= M <= N.
*
*  PL      (output) REAL
*  PR      (output) REAL
*          If IJOB = 1, 4 or 5, PL, PR are lower bounds on the
*          reciprocal  of the norm of "projections" onto left and right
*          eigenspace with respect to the selected cluster.
*          0 < PL, PR <= 1.
*          If M = 0 or M = N, PL = PR  = 1.
*          If IJOB = 0, 2 or 3 PL, PR are not referenced.
*
*  DIF     (output) REAL array, dimension (2).
*          If IJOB >= 2, DIF(1:2) store the estimates of Difu and Difl.
*          If IJOB = 2 or 4, DIF(1:2) are F-norm-based upper bounds on
*          Difu and Difl. If IJOB = 3 or 5, DIF(1:2) are 1-norm-based
*          estimates of Difu and Difl, computed using reversed
*          communication with CLACN2.
*          If M = 0 or N, DIF(1:2) = F-norm([A, B]).
*          If IJOB = 0 or 1, DIF is not referenced.
*
*  WORK    (workspace/output) COMPLEX array, dimension (MAX(1,LWORK))
*          On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
*
*  LWORK   (input) INTEGER
*          The dimension of the array WORK. LWORK >=  1
*          If IJOB = 1, 2 or 4, LWORK >=  2*M*(N-M)
*          If IJOB = 3 or 5, LWORK >=  4*M*(N-M)
*
*          If LWORK = -1, then a workspace query is assumed; the routine
*          only calculates the optimal size of the WORK array, returns
*          this value as the first entry of the WORK array, and no error
*          message related to LWORK is issued by XERBLA.
*
*  IWORK   (workspace/output) INTEGER array, dimension (MAX(1,LIWORK))
*          On exit, if INFO = 0, IWORK(1) returns the optimal LIWORK.
*
*  LIWORK  (input) INTEGER
*          The dimension of the array IWORK. LIWORK >= 1.
*          If IJOB = 1, 2 or 4, LIWORK >=  N+2;
*          If IJOB = 3 or 5, LIWORK >= MAX(N+2, 2*M*(N-M));
*
*          If LIWORK = -1, then a workspace query is assumed; the
*          routine only calculates the optimal size of the IWORK array,
*          returns this value as the first entry of the IWORK array, and
*          no error message related to LIWORK is issued by XERBLA.
*
*  INFO    (output) INTEGER
*            =0: Successful exit.
*            <0: If INFO = -i, the i-th argument had an illegal value.
*            =1: Reordering of (A, B) failed because the transformed
*                matrix pair (A, B) would be too far from generalized
*                Schur form; the problem is very ill-conditioned.
*                (A, B) may have been partially reordered.
*                If requested, 0 is returned in DIF(*), PL and PR.
*
*
*  Further Details
*  ===============
*
*  CTGSEN first collects the selected eigenvalues by computing unitary
*  U and W that move them to the top left corner of (A, B). In other
*  words, the selected eigenvalues are the eigenvalues of (A11, B11) in
*
*              U**H*(A, B)*W = (A11 A12) (B11 B12) n1
*                              ( 0  A22),( 0  B22) n2
*                                n1  n2    n1  n2
*
*  where N = n1+n2 and U**H means the conjugate transpose of U. The first
*  n1 columns of U and W span the specified pair of left and right
*  eigenspaces (deflating subspaces) of (A, B).
*
*  If (A, B) has been obtained from the generalized real Schur
*  decomposition of a matrix pair (C, D) = Q*(A, B)*Z', then the
*  reordered generalized Schur form of (C, D) is given by
*
*           (C, D) = (Q*U)*(U**H *(A, B)*W)*(Z*W)**H,
*
*  and the first n1 columns of Q*U and Z*W span the corresponding
*  deflating subspaces of (C, D) (Q and Z store Q*U and Z*W, resp.).
*
*  Note that if the selected eigenvalue is sufficiently ill-conditioned,
*  then its value may differ significantly from its value before
*  reordering.
*
*  The reciprocal condition numbers of the left and right eigenspaces
*  spanned by the first n1 columns of U and W (or Q*U and Z*W) may
*  be returned in DIF(1:2), corresponding to Difu and Difl, resp.
*
*  The Difu and Difl are defined as:
*
*       Difu[(A11, B11), (A22, B22)] = sigma-min( Zu )
*  and
*       Difl[(A11, B11), (A22, B22)] = Difu[(A22, B22), (A11, B11)],
*
*  where sigma-min(Zu) is the smallest singular value of the
*  (2*n1*n2)-by-(2*n1*n2) matrix
*
*       Zu = [ kron(In2, A11)  -kron(A22**H, In1) ]
*            [ kron(In2, B11)  -kron(B22**H, In1) ].
*
*  Here, Inx is the identity matrix of size nx and A22**H is the
*  conjuguate transpose of A22. kron(X, Y) is the Kronecker product between
*  the matrices X and Y.
*
*  When DIF(2) is small, small changes in (A, B) can cause large changes
*  in the deflating subspace. An approximate (asymptotic) bound on the
*  maximum angular error in the computed deflating subspaces is
*
*       EPS * norm((A, B)) / DIF(2),
*
*  where EPS is the machine precision.
*
*  The reciprocal norm of the projectors on the left and right
*  eigenspaces associated with (A11, B11) may be returned in PL and PR.
*  They are computed as follows. First we compute L and R so that
*  P*(A, B)*Q is block diagonal, where
*
*       P = ( I -L ) n1           Q = ( I R ) n1
*           ( 0  I ) n2    and        ( 0 I ) n2
*             n1 n2                    n1 n2
*
*  and (L, R) is the solution to the generalized Sylvester equation
*
*       A11*R - L*A22 = -A12
*       B11*R - L*B22 = -B12
*
*  Then PL = (F-norm(L)**2+1)**(-1/2) and PR = (F-norm(R)**2+1)**(-1/2).
*  An approximate (asymptotic) bound on the average absolute error of
*  the selected eigenvalues is
*
*       EPS * norm((A, B)) / PL.
*
*  There are also global error bounds which valid for perturbations up
*  to a certain restriction:  A lower bound (x) on the smallest
*  F-norm(E,F) for which an eigenvalue of (A11, B11) may move and
*  coalesce with an eigenvalue of (A22, B22) under perturbation (E,F),
*  (i.e. (A + E, B + F), is
*
*   x = min(Difu,Difl)/((1/(PL*PL)+1/(PR*PR))**(1/2)+2*max(1/PL,1/PR)).
*
*  An approximate bound on x can be computed from DIF(1:2), PL and PR.
*
*  If y = ( F-norm(E,F) / x) <= 1, the angles between the perturbed
*  (L', R') and unperturbed (L, R) left and right deflating subspaces
*  associated with the selected cluster in the (1,1)-blocks can be
*  bounded as
*
*   max-angle(L, L') <= arctan( y * PL / (1 - y * (1 - PL * PL)**(1/2))
*   max-angle(R, R') <= arctan( y * PR / (1 - y * (1 - PR * PR)**(1/2))
*
*  See LAPACK User's Guide section 4.11 or the following references
*  for more information.
*
*  Note that if the default method for computing the Frobenius-norm-
*  based estimate DIF is not wanted (see CLATDF), then the parameter
*  IDIFJB (see below) should be changed from 3 to 4 (routine CLATDF
*  (IJOB = 2 will be used)). See CTGSYL for more details.
*
*  Based on contributions by
*     Bo Kagstrom and Peter Poromaa, Department of Computing Science,
*     Umea University, S-901 87 Umea, Sweden.
*
*  References
*  ==========
*
*  [1] B. Kagstrom; A Direct Method for Reordering Eigenvalues in the
*      Generalized Real Schur Form of a Regular Matrix Pair (A, B), in
*      M.S. Moonen et al (eds), Linear Algebra for Large Scale and
*      Real-Time Applications, Kluwer Academic Publ. 1993, pp 195-218.
*
*  [2] B. Kagstrom and P. Poromaa; Computing Eigenspaces with Specified
*      Eigenvalues of a Regular Matrix Pair (A, B) and Condition
*      Estimation: Theory, Algorithms and Software, Report
*      UMINF - 94.04, Department of Computing Science, Umea University,
*      S-901 87 Umea, Sweden, 1994. Also as LAPACK Working Note 87.
*      To appear in Numerical Algorithms, 1996.
*
*  [3] B. Kagstrom and P. Poromaa, LAPACK-Style Algorithms and Software
*      for Solving the Generalized Sylvester Equation and Estimating the
*      Separation between Regular Matrix Pairs, Report UMINF - 93.23,
*      Department of Computing Science, Umea University, S-901 87 Umea,
*      Sweden, December 1993, Revised April 1994, Also as LAPACK working
*      Note 75. To appear in ACM Trans. on Math. Software, Vol 22, No 1,
*      1996.
*
*  =====================================================================
*
*     .. Parameters ..
      INTEGER            IDIFJB
      PARAMETER          ( IDIFJB = 3 )
      REAL               ZERO, ONE
      PARAMETER          ( ZERO = 0.0E+0, ONE = 1.0E+0 )
*     ..
*     .. Local Scalars ..
      LOGICAL            LQUERY, SWAP, WANTD, WANTD1, WANTD2, WANTP
      INTEGER            I, IERR, IJB, K, KASE, KS, LIWMIN, LWMIN, MN2,
     $                   N1, N2
      REAL               DSCALE, DSUM, RDSCAL, SAFMIN
      COMPLEX            TEMP1, TEMP2
*     ..
*     .. Local Arrays ..
      INTEGER            ISAVE( 3 )
*     ..
*     .. External Subroutines ..
      REAL               SLAMCH 
      EXTERNAL           CLACN2, CLACPY, CLASSQ, CSCAL, CTGEXC, CTGSYL,
     $                   SLAMCH, XERBLA
*     ..
*     .. Intrinsic Functions ..
      INTRINSIC          ABSCMPLXCONJGMAXSQRT
*     ..
*     .. Executable Statements ..
*
*     Decode and test the input parameters
*
      INFO = 0
      LQUERY = ( LWORK.EQ.-1 .OR. LIWORK.EQ.-1 )
*
      IF( IJOB.LT.0 .OR. IJOB.GT.5 ) THEN
         INFO = -1
      ELSE IF( N.LT.0 ) THEN
         INFO = -5
      ELSE IF( LDA.LT.MAX1, N ) ) THEN
         INFO = -7
      ELSE IF( LDB.LT.MAX1, N ) ) THEN
         INFO = -9
      ELSE IF( LDQ.LT.1 .OR. ( WANTQ .AND. LDQ.LT.N ) ) THEN
         INFO = -13
      ELSE IF( LDZ.LT.1 .OR. ( WANTZ .AND. LDZ.LT.N ) ) THEN
         INFO = -15
      END IF
*
      IF( INFO.NE.0 ) THEN
         CALL XERBLA( 'CTGSEN'-INFO )
         RETURN
      END IF
*
      IERR = 0
*
      WANTP = IJOB.EQ.1 .OR. IJOB.GE.4
      WANTD1 = IJOB.EQ.2 .OR. IJOB.EQ.4
      WANTD2 = IJOB.EQ.3 .OR. IJOB.EQ.5
      WANTD = WANTD1 .OR. WANTD2
*
*     Set M to the dimension of the specified pair of deflating
*     subspaces.
*
      M = 0
      DO 10 K = 1, N
         ALPHA( K ) = A( K, K )
         BETA( K ) = B( K, K )
         IF( K.LT.N ) THEN
            IFSELECT( K ) )
     $         M = M + 1
         ELSE
            IFSELECT( N ) )
     $         M = M + 1
         END IF
   10 CONTINUE
*
      IF( IJOB.EQ.1 .OR. IJOB.EQ.2 .OR. IJOB.EQ.4 ) THEN
         LWMIN = MAX12*M*(N-M) )
         LIWMIN = MAX1, N+2 )
      ELSE IF( IJOB.EQ.3 .OR. IJOB.EQ.5 ) THEN
         LWMIN = MAX14*M*(N-M) )
         LIWMIN = MAX12*M*(N-M), N+2 )
      ELSE
         LWMIN = 1
         LIWMIN = 1
      END IF
*
      WORK( 1 ) = LWMIN
      IWORK( 1 ) = LIWMIN
*
      IF( LWORK.LT.LWMIN .AND. .NOT.LQUERY ) THEN
         INFO = -21
      ELSE IF( LIWORK.LT.LIWMIN .AND. .NOT.LQUERY ) THEN
         INFO = -23
      END IF
*
      IF( INFO.NE.0 ) THEN
         CALL XERBLA( 'CTGSEN'-INFO )
         RETURN
      ELSE IF( LQUERY ) THEN
         RETURN
      END IF
*
*     Quick return if possible.
*
      IF( M.EQ..OR. M.EQ.0 ) THEN
         IF( WANTP ) THEN
            PL = ONE
            PR = ONE
         END IF
         IF( WANTD ) THEN
            DSCALE = ZERO
            DSUM = ONE
            DO 20 I = 1, N
               CALL CLASSQ( N, A( 1, I ), 1, DSCALE, DSUM )
               CALL CLASSQ( N, B( 1, I ), 1, DSCALE, DSUM )
   20       CONTINUE
            DIF( 1 ) = DSCALE*SQRT( DSUM )
            DIF( 2 ) = DIF( 1 )
         END IF
         GO TO 70
      END IF
*
*     Get machine constant
*
      SAFMIN = SLAMCH( 'S' )
*
*     Collect the selected blocks at the top-left corner of (A, B).
*
      KS = 0
      DO 30 K = 1, N
         SWAP = SELECT( K )
         IF( SWAP ) THEN
            KS = KS + 1
*
*           Swap the K-th block to position KS. Compute unitary Q
*           and Z that will swap adjacent diagonal blocks in (A, B).
*
            IF( K.NE.KS )
     $         CALL CTGEXC( WANTQ, WANTZ, N, A, LDA, B, LDB, Q, LDQ, Z,
     $                      LDZ, K, KS, IERR )
*
            IF( IERR.GT.0 ) THEN
*
*              Swap is rejected: exit.
*
               INFO = 1
               IF( WANTP ) THEN
                  PL = ZERO
                  PR = ZERO
               END IF
               IF( WANTD ) THEN
                  DIF( 1 ) = ZERO
                  DIF( 2 ) = ZERO
               END IF
               GO TO 70
            END IF
         END IF
   30 CONTINUE
      IF( WANTP ) THEN
*
*        Solve generalized Sylvester equation for R and L:
*                   A11 * R - L * A22 = A12
*                   B11 * R - L * B22 = B12
*
         N1 = M
         N2 = N - M
         I = N1 + 1
         CALL CLACPY( 'Full', N1, N2, A( 1, I ), LDA, WORK, N1 )
         CALL CLACPY( 'Full', N1, N2, B( 1, I ), LDB, WORK( N1*N2+1 ),
     $                N1 )
         IJB = 0
         CALL CTGSYL( 'N', IJB, N1, N2, A, LDA, A( I, I ), LDA, WORK,
     $                N1, B, LDB, B( I, I ), LDB, WORK( N1*N2+1 ), N1,
     $                DSCALE, DIF( 1 ), WORK( N1*N2*2+1 ),
     $                LWORK-2*N1*N2, IWORK, IERR )
*
*        Estimate the reciprocal of norms of "projections" onto
*        left and right eigenspaces
*
         RDSCAL = ZERO
         DSUM = ONE
         CALL CLASSQ( N1*N2, WORK, 1, RDSCAL, DSUM )
         PL = RDSCAL*SQRT( DSUM )
         IF( PL.EQ.ZERO ) THEN
            PL = ONE
         ELSE
            PL = DSCALE / ( SQRT( DSCALE*DSCALE / PL+PL )*SQRT( PL ) )
         END IF
         RDSCAL = ZERO
         DSUM = ONE
         CALL CLASSQ( N1*N2, WORK( N1*N2+1 ), 1, RDSCAL, DSUM )
         PR = RDSCAL*SQRT( DSUM )
         IF( PR.EQ.ZERO ) THEN
            PR = ONE
         ELSE
            PR = DSCALE / ( SQRT( DSCALE*DSCALE / PR+PR )*SQRT( PR ) )
         END IF
      END IF
      IF( WANTD ) THEN
*
*        Compute estimates Difu and Difl.
*
         IF( WANTD1 ) THEN
            N1 = M
            N2 = N - M
            I = N1 + 1
            IJB = IDIFJB
*
*           Frobenius norm-based Difu estimate.
*
            CALL CTGSYL( 'N', IJB, N1, N2, A, LDA, A( I, I ), LDA, WORK,
     $                   N1, B, LDB, B( I, I ), LDB, WORK( N1*N2+1 ),
     $                   N1, DSCALE, DIF( 1 ), WORK( N1*N2*2+1 ),
     $                   LWORK-2*N1*N2, IWORK, IERR )
*
*           Frobenius norm-based Difl estimate.
*
            CALL CTGSYL( 'N', IJB, N2, N1, A( I, I ), LDA, A, LDA, WORK,
     $                   N2, B( I, I ), LDB, B, LDB, WORK( N1*N2+1 ),
     $                   N2, DSCALE, DIF( 2 ), WORK( N1*N2*2+1 ),
     $                   LWORK-2*N1*N2, IWORK, IERR )
         ELSE
*
*           Compute 1-norm-based estimates of Difu and Difl using
*           reversed communication with CLACN2. In each step a
*           generalized Sylvester equation or a transposed variant
*           is solved.
*
            KASE = 0
            N1 = M
            N2 = N - M
            I = N1 + 1
            IJB = 0
            MN2 = 2*N1*N2
*
*           1-norm-based estimate of Difu.
*
   40       CONTINUE
            CALL CLACN2( MN2, WORK( MN2+1 ), WORK, DIF( 1 ), KASE,
     $                   ISAVE )
            IF( KASE.NE.0 ) THEN
               IF( KASE.EQ.1 ) THEN
*
*                 Solve generalized Sylvester equation
*
                  CALL CTGSYL( 'N', IJB, N1, N2, A, LDA, A( I, I ), LDA,
     $                         WORK, N1, B, LDB, B( I, I ), LDB,
     $                         WORK( N1*N2+1 ), N1, DSCALE, DIF( 1 ),
     $                         WORK( N1*N2*2+1 ), LWORK-2*N1*N2, IWORK,
     $                         IERR )
               ELSE
*
*                 Solve the transposed variant.
*
                  CALL CTGSYL( 'C', IJB, N1, N2, A, LDA, A( I, I ), LDA,
     $                         WORK, N1, B, LDB, B( I, I ), LDB,
     $                         WORK( N1*N2+1 ), N1, DSCALE, DIF( 1 ),
     $                         WORK( N1*N2*2+1 ), LWORK-2*N1*N2, IWORK,
     $                         IERR )
               END IF
               GO TO 40
            END IF
            DIF( 1 ) = DSCALE / DIF( 1 )
*
*           1-norm-based estimate of Difl.
*
   50       CONTINUE
            CALL CLACN2( MN2, WORK( MN2+1 ), WORK, DIF( 2 ), KASE,
     $                   ISAVE )
            IF( KASE.NE.0 ) THEN
               IF( KASE.EQ.1 ) THEN
*
*                 Solve generalized Sylvester equation
*
                  CALL CTGSYL( 'N', IJB, N2, N1, A( I, I ), LDA, A, LDA,
     $                         WORK, N2, B( I, I ), LDB, B, LDB,
     $                         WORK( N1*N2+1 ), N2, DSCALE, DIF( 2 ),
     $                         WORK( N1*N2*2+1 ), LWORK-2*N1*N2, IWORK,
     $                         IERR )
               ELSE
*
*                 Solve the transposed variant.
*
                  CALL CTGSYL( 'C', IJB, N2, N1, A( I, I ), LDA, A, LDA,
     $                         WORK, N2, B, LDB, B( I, I ), LDB,
     $                         WORK( N1*N2+1 ), N2, DSCALE, DIF( 2 ),
     $                         WORK( N1*N2*2+1 ), LWORK-2*N1*N2, IWORK,
     $                         IERR )
               END IF
               GO TO 50
            END IF
            DIF( 2 ) = DSCALE / DIF( 2 )
         END IF
      END IF
*
*     If B(K,K) is complex, make it real and positive (normalization
*     of the generalized Schur form) and Store the generalized 
*     eigenvalues of reordered pair (A, B)
*
      DO 60 K = 1, N
         DSCALE = ABS( B( K, K ) )
         IF( DSCALE.GT.SAFMIN ) THEN
            TEMP1 = CONJG( B( K, K ) / DSCALE )
            TEMP2 = B( K, K ) / DSCALE
            B( K, K ) = DSCALE
            CALL CSCAL( N-K, TEMP1, B( K, K+1 ), LDB )
            CALL CSCAL( N-K+1, TEMP1, A( K, K ), LDA )
            IF( WANTQ )
     $         CALL CSCAL( N, TEMP2, Q( 1, K ), 1 )
         ELSE
            B( K, K ) = CMPLX( ZERO, ZERO )
         END IF
*
         ALPHA( K ) = A( K, K )
         BETA( K ) = B( K, K )
*
   60 CONTINUE
*
   70 CONTINUE
*
      WORK( 1 ) = LWMIN
      IWORK( 1 ) = LIWMIN
*
      RETURN
*
*     End of CTGSEN
*
      END