1
       2
       3
       4
       5
       6
       7
       8
       9
      10
      11
      12
      13
      14
      15
      16
      17
      18
      19
      20
      21
      22
      23
      24
      25
      26
      27
      28
      29
      30
      31
      32
      33
      34
      35
      36
      37
      38
      39
      40
      41
      42
      43
      44
      45
      46
      47
      48
      49
      50
      51
      52
      53
      54
      55
      56
      57
      58
      59
      60
      61
      62
      63
      64
      65
      66
      67
      68
      69
      70
      71
      72
      73
      74
      75
      76
      77
      78
      79
      80
      81
      82
      83
      84
      85
      86
      87
      88
      89
      90
      91
      92
      93
      94
      95
      96
      97
      98
      99
     100
     101
     102
     103
     104
     105
     106
     107
     108
     109
     110
     111
     112
     113
     114
     115
     116
     117
     118
     119
     120
     121
     122
     123
     124
     125
     126
     127
     128
     129
     130
     131
     132
     133
     134
     135
     136
     137
     138
     139
     140
     141
     142
     143
     144
     145
     146
     147
     148
     149
     150
     151
     152
     153
     154
     155
     156
     157
     158
     159
     160
     161
     162
     163
     164
     165
     166
     167
     168
     169
     170
     171
     172
     173
     174
     175
     176
     177
     178
     179
     180
     181
     182
     183
     184
     185
     186
     187
     188
     189
     190
     191
     192
     193
     194
     195
     196
     197
     198
     199
     200
     201
     202
     203
     204
     205
     206
     207
     208
     209
     210
     211
     212
     213
     214
     215
     216
     217
     218
     219
     220
     221
     222
     223
     224
     225
     226
     227
     228
     229
     230
     231
     232
     233
     234
     235
     236
     237
     238
     239
     240
     241
     242
     243
     244
     245
     246
     247
     248
     249
     250
     251
     252
     253
     254
     255
     256
     257
     258
     259
     260
     261
     262
     263
     264
     265
     266
     267
     268
     269
     270
     271
     272
     273
     274
     275
     276
     277
     278
     279
     280
     281
     282
     283
     284
     285
     286
     287
     288
     289
     290
     291
     292
     293
     294
     295
     296
     297
     298
     299
     300
     301
     302
     303
     304
     305
     306
     307
     308
     309
     310
     311
     312
     313
     314
     315
     316
     317
     318
     319
     320
     321
     322
     323
     324
     325
     326
     327
     328
     329
     330
     331
     332
     333
     334
     335
     336
     337
     338
     339
     340
     341
     342
     343
     344
     345
     346
     347
     348
     349
     350
     351
     352
     353
     354
     355
     356
     357
     358
     359
     360
     361
     362
     363
     364
     365
     366
     367
     368
     369
     370
     371
     372
     373
     374
     375
     376
     377
     378
     379
     380
     381
     382
     383
     384
     385
     386
     387
     388
     389
     390
     391
     392
     393
     394
     395
     396
     397
     398
      SUBROUTINE CTGSNA( JOB, HOWMNY, SELECT, N, A, LDA, B, LDB, VL,
     $                   LDVL, VR, LDVR, S, DIF, MM, M, WORK, LWORK,
     $                   IWORK, INFO )
*
*  -- LAPACK routine (version 3.3.1) --
*  -- LAPACK is a software package provided by Univ. of Tennessee,    --
*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
*  -- April 2011                                                      --
*
*     .. Scalar Arguments ..
      CHARACTER          HOWMNY, JOB
      INTEGER            INFO, LDA, LDB, LDVL, LDVR, LWORK, M, MM, N
*     ..
*     .. Array Arguments ..
      LOGICAL            SELECT* )
      INTEGER            IWORK( * )
      REAL               DIF( * ), S( * )
      COMPLEX            A( LDA, * ), B( LDB, * ), VL( LDVL, * ),
     $                   VR( LDVR, * ), WORK( * )
*     ..
*
*  Purpose
*  =======
*
*  CTGSNA estimates reciprocal condition numbers for specified
*  eigenvalues and/or eigenvectors of a matrix pair (A, B).
*
*  (A, B) must be in generalized Schur canonical form, that is, A and
*  B are both upper triangular.
*
*  Arguments
*  =========
*
*  JOB     (input) CHARACTER*1
*          Specifies whether condition numbers are required for
*          eigenvalues (S) or eigenvectors (DIF):
*          = 'E': for eigenvalues only (S);
*          = 'V': for eigenvectors only (DIF);
*          = 'B': for both eigenvalues and eigenvectors (S and DIF).
*
*  HOWMNY  (input) CHARACTER*1
*          = 'A': compute condition numbers for all eigenpairs;
*          = 'S': compute condition numbers for selected eigenpairs
*                 specified by the array SELECT.
*
*  SELECT  (input) LOGICAL array, dimension (N)
*          If HOWMNY = 'S', SELECT specifies the eigenpairs for which
*          condition numbers are required. To select condition numbers
*          for the corresponding j-th eigenvalue and/or eigenvector,
*          SELECT(j) must be set to .TRUE..
*          If HOWMNY = 'A', SELECT is not referenced.
*
*  N       (input) INTEGER
*          The order of the square matrix pair (A, B). N >= 0.
*
*  A       (input) COMPLEX array, dimension (LDA,N)
*          The upper triangular matrix A in the pair (A,B).
*
*  LDA     (input) INTEGER
*          The leading dimension of the array A. LDA >= max(1,N).
*
*  B       (input) COMPLEX array, dimension (LDB,N)
*          The upper triangular matrix B in the pair (A, B).
*
*  LDB     (input) INTEGER
*          The leading dimension of the array B. LDB >= max(1,N).
*
*  VL      (input) COMPLEX array, dimension (LDVL,M)
*          IF JOB = 'E' or 'B', VL must contain left eigenvectors of
*          (A, B), corresponding to the eigenpairs specified by HOWMNY
*          and SELECT.  The eigenvectors must be stored in consecutive
*          columns of VL, as returned by CTGEVC.
*          If JOB = 'V', VL is not referenced.
*
*  LDVL    (input) INTEGER
*          The leading dimension of the array VL. LDVL >= 1; and
*          If JOB = 'E' or 'B', LDVL >= N.
*
*  VR      (input) COMPLEX array, dimension (LDVR,M)
*          IF JOB = 'E' or 'B', VR must contain right eigenvectors of
*          (A, B), corresponding to the eigenpairs specified by HOWMNY
*          and SELECT.  The eigenvectors must be stored in consecutive
*          columns of VR, as returned by CTGEVC.
*          If JOB = 'V', VR is not referenced.
*
*  LDVR    (input) INTEGER
*          The leading dimension of the array VR. LDVR >= 1;
*          If JOB = 'E' or 'B', LDVR >= N.
*
*  S       (output) REAL array, dimension (MM)
*          If JOB = 'E' or 'B', the reciprocal condition numbers of the
*          selected eigenvalues, stored in consecutive elements of the
*          array.
*          If JOB = 'V', S is not referenced.
*
*  DIF     (output) REAL array, dimension (MM)
*          If JOB = 'V' or 'B', the estimated reciprocal condition
*          numbers of the selected eigenvectors, stored in consecutive
*          elements of the array.
*          If the eigenvalues cannot be reordered to compute DIF(j),
*          DIF(j) is set to 0; this can only occur when the true value
*          would be very small anyway.
*          For each eigenvalue/vector specified by SELECT, DIF stores
*          a Frobenius norm-based estimate of Difl.
*          If JOB = 'E', DIF is not referenced.
*
*  MM      (input) INTEGER
*          The number of elements in the arrays S and DIF. MM >= M.
*
*  M       (output) INTEGER
*          The number of elements of the arrays S and DIF used to store
*          the specified condition numbers; for each selected eigenvalue
*          one element is used. If HOWMNY = 'A', M is set to N.
*
*  WORK    (workspace/output) COMPLEX array, dimension (MAX(1,LWORK))
*          On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
*
*  LWORK  (input) INTEGER
*          The dimension of the array WORK. LWORK >= max(1,N).
*          If JOB = 'V' or 'B', LWORK >= max(1,2*N*N).
*
*  IWORK   (workspace) INTEGER array, dimension (N+2)
*          If JOB = 'E', IWORK is not referenced.
*
*  INFO    (output) INTEGER
*          = 0: Successful exit
*          < 0: If INFO = -i, the i-th argument had an illegal value
*
*  Further Details
*  ===============
*
*  The reciprocal of the condition number of the i-th generalized
*  eigenvalue w = (a, b) is defined as
*
*          S(I) = (|v**HAu|**2 + |v**HBu|**2)**(1/2) / (norm(u)*norm(v))
*
*  where u and v are the right and left eigenvectors of (A, B)
*  corresponding to w; |z| denotes the absolute value of the complex
*  number, and norm(u) denotes the 2-norm of the vector u. The pair
*  (a, b) corresponds to an eigenvalue w = a/b (= v**HAu/v**HBu) of the
*  matrix pair (A, B). If both a and b equal zero, then (A,B) is
*  singular and S(I) = -1 is returned.
*
*  An approximate error bound on the chordal distance between the i-th
*  computed generalized eigenvalue w and the corresponding exact
*  eigenvalue lambda is
*
*          chord(w, lambda) <=   EPS * norm(A, B) / S(I),
*
*  where EPS is the machine precision.
*
*  The reciprocal of the condition number of the right eigenvector u
*  and left eigenvector v corresponding to the generalized eigenvalue w
*  is defined as follows. Suppose
*
*                   (A, B) = ( a   *  ) ( b  *  )  1
*                            ( 0  A22 ),( 0 B22 )  n-1
*                              1  n-1     1 n-1
*
*  Then the reciprocal condition number DIF(I) is
*
*          Difl[(a, b), (A22, B22)]  = sigma-min( Zl )
*
*  where sigma-min(Zl) denotes the smallest singular value of
*
*         Zl = [ kron(a, In-1) -kron(1, A22) ]
*              [ kron(b, In-1) -kron(1, B22) ].
*
*  Here In-1 is the identity matrix of size n-1 and X**H is the conjugate
*  transpose of X. kron(X, Y) is the Kronecker product between the
*  matrices X and Y.
*
*  We approximate the smallest singular value of Zl with an upper
*  bound. This is done by CLATDF.
*
*  An approximate error bound for a computed eigenvector VL(i) or
*  VR(i) is given by
*
*                      EPS * norm(A, B) / DIF(i).
*
*  See ref. [2-3] for more details and further references.
*
*  Based on contributions by
*     Bo Kagstrom and Peter Poromaa, Department of Computing Science,
*     Umea University, S-901 87 Umea, Sweden.
*
*  References
*  ==========
*
*  [1] B. Kagstrom; A Direct Method for Reordering Eigenvalues in the
*      Generalized Real Schur Form of a Regular Matrix Pair (A, B), in
*      M.S. Moonen et al (eds), Linear Algebra for Large Scale and
*      Real-Time Applications, Kluwer Academic Publ. 1993, pp 195-218.
*
*  [2] B. Kagstrom and P. Poromaa; Computing Eigenspaces with Specified
*      Eigenvalues of a Regular Matrix Pair (A, B) and Condition
*      Estimation: Theory, Algorithms and Software, Report
*      UMINF - 94.04, Department of Computing Science, Umea University,
*      S-901 87 Umea, Sweden, 1994. Also as LAPACK Working Note 87.
*      To appear in Numerical Algorithms, 1996.
*
*  [3] B. Kagstrom and P. Poromaa, LAPACK-Style Algorithms and Software
*      for Solving the Generalized Sylvester Equation and Estimating the
*      Separation between Regular Matrix Pairs, Report UMINF - 93.23,
*      Department of Computing Science, Umea University, S-901 87 Umea,
*      Sweden, December 1993, Revised April 1994, Also as LAPACK Working
*      Note 75.
*      To appear in ACM Trans. on Math. Software, Vol 22, No 1, 1996.
*
*  =====================================================================
*
*     .. Parameters ..
      REAL               ZERO, ONE
      INTEGER            IDIFJB
      PARAMETER          ( ZERO = 0.0E+0, ONE = 1.0E+0, IDIFJB = 3 )
*     ..
*     .. Local Scalars ..
      LOGICAL            LQUERY, SOMCON, WANTBH, WANTDF, WANTS
      INTEGER            I, IERR, IFST, ILST, K, KS, LWMIN, N1, N2
      REAL               BIGNUM, COND, EPS, LNRM, RNRM, SCALE, SMLNUM
      COMPLEX            YHAX, YHBX
*     ..
*     .. Local Arrays ..
      COMPLEX            DUMMY( 1 ), DUMMY1( 1 )
*     ..
*     .. External Functions ..
      LOGICAL            LSAME
      REAL               SCNRM2, SLAMCH, SLAPY2
      COMPLEX            CDOTC
      EXTERNAL           LSAME, SCNRM2, SLAMCH, SLAPY2, CDOTC
*     ..
*     .. External Subroutines ..
      EXTERNAL           CGEMV, CLACPY, CTGEXC, CTGSYL, SLABAD, XERBLA
*     ..
*     .. Intrinsic Functions ..
      INTRINSIC          ABSCMPLXMAX
*     ..
*     .. Executable Statements ..
*
*     Decode and test the input parameters
*
      WANTBH = LSAME( JOB, 'B' )
      WANTS = LSAME( JOB, 'E' ) .OR. WANTBH
      WANTDF = LSAME( JOB, 'V' ) .OR. WANTBH
*
      SOMCON = LSAME( HOWMNY, 'S' )
*
      INFO = 0
      LQUERY = ( LWORK.EQ.-1 )
*
      IF.NOT.WANTS .AND. .NOT.WANTDF ) THEN
         INFO = -1
      ELSE IF.NOT.LSAME( HOWMNY, 'A' ) .AND. .NOT.SOMCON ) THEN
         INFO = -2
      ELSE IF( N.LT.0 ) THEN
         INFO = -4
      ELSE IF( LDA.LT.MAX1, N ) ) THEN
         INFO = -6
      ELSE IF( LDB.LT.MAX1, N ) ) THEN
         INFO = -8
      ELSE IF( WANTS .AND. LDVL.LT.N ) THEN
         INFO = -10
      ELSE IF( WANTS .AND. LDVR.LT.N ) THEN
         INFO = -12
      ELSE
*
*        Set M to the number of eigenpairs for which condition numbers
*        are required, and test MM.
*
         IF( SOMCON ) THEN
            M = 0
            DO 10 K = 1, N
               IFSELECT( K ) )
     $            M = M + 1
   10       CONTINUE
         ELSE
            M = N
         END IF
*
         IF( N.EQ.0 ) THEN
            LWMIN = 1
         ELSE IF( LSAME( JOB, 'V' ) .OR. LSAME( JOB, 'B' ) ) THEN
            LWMIN = 2*N*N
         ELSE
            LWMIN = N
         END IF
         WORK( 1 ) = LWMIN
*
         IF( MM.LT.M ) THEN
            INFO = -15
         ELSE IF( LWORK.LT.LWMIN .AND. .NOT.LQUERY ) THEN
            INFO = -18
         END IF
      END IF
*
      IF( INFO.NE.0 ) THEN
         CALL XERBLA( 'CTGSNA'-INFO )
         RETURN
      ELSE IF( LQUERY ) THEN
         RETURN
      END IF
*
*     Quick return if possible
*
      IF( N.EQ.0 )
     $   RETURN
*
*     Get machine constants
*
      EPS = SLAMCH( 'P' )
      SMLNUM = SLAMCH( 'S' ) / EPS
      BIGNUM = ONE / SMLNUM
      CALL SLABAD( SMLNUM, BIGNUM )
      KS = 0
      DO 20 K = 1, N
*
*        Determine whether condition numbers are required for the k-th
*        eigenpair.
*
         IF( SOMCON ) THEN
            IF.NOT.SELECT( K ) )
     $         GO TO 20
         END IF
*
         KS = KS + 1
*
         IF( WANTS ) THEN
*
*           Compute the reciprocal condition number of the k-th
*           eigenvalue.
*
            RNRM = SCNRM2( N, VR( 1, KS ), 1 )
            LNRM = SCNRM2( N, VL( 1, KS ), 1 )
            CALL CGEMV( 'N', N, N, CMPLX( ONE, ZERO ), A, LDA,
     $                  VR( 1, KS ), 1CMPLX( ZERO, ZERO ), WORK, 1 )
            YHAX = CDOTC( N, WORK, 1, VL( 1, KS ), 1 )
            CALL CGEMV( 'N', N, N, CMPLX( ONE, ZERO ), B, LDB,
     $                  VR( 1, KS ), 1CMPLX( ZERO, ZERO ), WORK, 1 )
            YHBX = CDOTC( N, WORK, 1, VL( 1, KS ), 1 )
            COND = SLAPY2( ABS( YHAX ), ABS( YHBX ) )
            IF( COND.EQ.ZERO ) THEN
               S( KS ) = -ONE
            ELSE
               S( KS ) = COND / ( RNRM*LNRM )
            END IF
         END IF
*
         IF( WANTDF ) THEN
            IF( N.EQ.1 ) THEN
               DIF( KS ) = SLAPY2( ABS( A( 11 ) ), ABS( B( 11 ) ) )
            ELSE
*
*              Estimate the reciprocal condition number of the k-th
*              eigenvectors.
*
*              Copy the matrix (A, B) to the array WORK and move the
*              (k,k)th pair to the (1,1) position.
*
               CALL CLACPY( 'Full', N, N, A, LDA, WORK, N )
               CALL CLACPY( 'Full', N, N, B, LDB, WORK( N*N+1 ), N )
               IFST = K
               ILST = 1
*
               CALL CTGEXC( .FALSE..FALSE., N, WORK, N, WORK( N*N+1 ),
     $                      N, DUMMY, 1, DUMMY1, 1, IFST, ILST, IERR )
*
               IF( IERR.GT.0 ) THEN
*
*                 Ill-conditioned problem - swap rejected.
*
                  DIF( KS ) = ZERO
               ELSE
*
*                 Reordering successful, solve generalized Sylvester
*                 equation for R and L,
*                            A22 * R - L * A11 = A12
*                            B22 * R - L * B11 = B12,
*                 and compute estimate of Difl[(A11,B11), (A22, B22)].
*
                  N1 = 1
                  N2 = N - N1
                  I = N*+ 1
                  CALL CTGSYL( 'N', IDIFJB, N2, N1, WORK( N*N1+N1+1 ),
     $                         N, WORK, N, WORK( N1+1 ), N,
     $                         WORK( N*N1+N1+I ), N, WORK( I ), N,
     $                         WORK( N1+I ), N, SCALE, DIF( KS ), DUMMY,
     $                         1, IWORK, IERR )
               END IF
            END IF
         END IF
*
   20 CONTINUE
      WORK( 1 ) = LWMIN
      RETURN
*
*     End of CTGSNA
*
      END