1
       2
       3
       4
       5
       6
       7
       8
       9
      10
      11
      12
      13
      14
      15
      16
      17
      18
      19
      20
      21
      22
      23
      24
      25
      26
      27
      28
      29
      30
      31
      32
      33
      34
      35
      36
      37
      38
      39
      40
      41
      42
      43
      44
      45
      46
      47
      48
      49
      50
      51
      52
      53
      54
      55
      56
      57
      58
      59
      60
      61
      62
      63
      64
      65
      66
      67
      68
      69
      70
      71
      72
      73
      74
      75
      76
      77
      78
      79
      80
      81
      82
      83
      84
      85
      86
      87
      88
      89
      90
      91
      92
      93
      94
      95
      96
      97
      98
      99
     100
     101
     102
     103
     104
     105
     106
     107
     108
     109
     110
     111
     112
     113
     114
     115
     116
     117
     118
     119
     120
     121
     122
     123
     124
     125
     126
     127
     128
     129
     130
     131
     132
     133
     134
     135
     136
     137
     138
     139
     140
     141
     142
     143
     144
     145
     146
     147
     148
     149
     150
     151
     152
     153
     154
     155
     156
     157
     158
     159
     160
     161
     162
     163
     164
     165
     166
     167
     168
     169
     170
     171
     172
     173
     174
     175
     176
     177
     178
     179
     180
     181
     182
     183
     184
     185
     186
     187
     188
     189
     190
     191
     192
     193
     194
     195
     196
     197
     198
     199
     200
     201
     202
     203
     204
     205
     206
     207
     208
     209
     210
     211
     212
     213
     214
     215
     216
     217
     218
     219
     220
     221
     222
     223
     224
     225
     226
     227
     228
     229
     230
     231
     232
     233
     234
     235
     236
     237
     238
     239
     240
     241
     242
     243
     244
     245
     246
     247
     248
     249
     250
     251
     252
     253
     254
     255
     256
     257
     258
     259
     260
     261
     262
     263
     264
     265
     266
     267
     268
     269
     270
     271
     272
     273
     274
     275
     276
     277
     278
     279
     280
     281
     282
     283
     284
     285
     286
     287
     288
     289
     290
     291
     292
     293
     294
     295
     296
     297
     298
     299
     300
     301
     302
     303
     304
     305
     306
     307
     308
     309
     310
     311
     312
     313
     314
     315
     316
     317
     318
     319
     320
     321
     322
     323
     324
     325
     326
     327
     328
     329
     330
     331
     332
     333
     334
     335
     336
     337
     338
     339
     340
     341
     342
     343
     344
     345
     346
     347
     348
     349
     350
     351
     352
     353
     354
     355
     356
     357
     358
     359
     360
     361
     362
     363
     364
     365
     366
     367
     368
     369
     370
     371
     372
     373
     374
     375
     376
     377
     378
     379
     380
     381
     382
     383
     384
     385
     386
     387
      SUBROUTINE CTREVC( SIDE, HOWMNY, SELECT, N, T, LDT, VL, LDVL, VR,
     $                   LDVR, MM, M, WORK, RWORK, INFO )
*
*  -- LAPACK routine (version 3.3.1) --
*  -- LAPACK is a software package provided by Univ. of Tennessee,    --
*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
*  -- April 2011                                                      --
*
*     .. Scalar Arguments ..
      CHARACTER          HOWMNY, SIDE
      INTEGER            INFO, LDT, LDVL, LDVR, M, MM, N
*     ..
*     .. Array Arguments ..
      LOGICAL            SELECT* )
      REAL               RWORK( * )
      COMPLEX            T( LDT, * ), VL( LDVL, * ), VR( LDVR, * ),
     $                   WORK( * )
*     ..
*
*  Purpose
*  =======
*
*  CTREVC computes some or all of the right and/or left eigenvectors of
*  a complex upper triangular matrix T.
*  Matrices of this type are produced by the Schur factorization of
*  a complex general matrix:  A = Q*T*Q**H, as computed by CHSEQR.
*  
*  The right eigenvector x and the left eigenvector y of T corresponding
*  to an eigenvalue w are defined by:
*  
*               T*x = w*x,     (y**H)*T = w*(y**H)
*  
*  where y**H denotes the conjugate transpose of the vector y.
*  The eigenvalues are not input to this routine, but are read directly
*  from the diagonal of T.
*  
*  This routine returns the matrices X and/or Y of right and left
*  eigenvectors of T, or the products Q*X and/or Q*Y, where Q is an
*  input matrix.  If Q is the unitary factor that reduces a matrix A to
*  Schur form T, then Q*X and Q*Y are the matrices of right and left
*  eigenvectors of A.
*
*  Arguments
*  =========
*
*  SIDE    (input) CHARACTER*1
*          = 'R':  compute right eigenvectors only;
*          = 'L':  compute left eigenvectors only;
*          = 'B':  compute both right and left eigenvectors.
*
*  HOWMNY  (input) CHARACTER*1
*          = 'A':  compute all right and/or left eigenvectors;
*          = 'B':  compute all right and/or left eigenvectors,
*                  backtransformed using the matrices supplied in
*                  VR and/or VL;
*          = 'S':  compute selected right and/or left eigenvectors,
*                  as indicated by the logical array SELECT.
*
*  SELECT  (input) LOGICAL array, dimension (N)
*          If HOWMNY = 'S', SELECT specifies the eigenvectors to be
*          computed.
*          The eigenvector corresponding to the j-th eigenvalue is
*          computed if SELECT(j) = .TRUE..
*          Not referenced if HOWMNY = 'A' or 'B'.
*
*  N       (input) INTEGER
*          The order of the matrix T. N >= 0.
*
*  T       (input/output) COMPLEX array, dimension (LDT,N)
*          The upper triangular matrix T.  T is modified, but restored
*          on exit.
*
*  LDT     (input) INTEGER
*          The leading dimension of the array T. LDT >= max(1,N).
*
*  VL      (input/output) COMPLEX array, dimension (LDVL,MM)
*          On entry, if SIDE = 'L' or 'B' and HOWMNY = 'B', VL must
*          contain an N-by-N matrix Q (usually the unitary matrix Q of
*          Schur vectors returned by CHSEQR).
*          On exit, if SIDE = 'L' or 'B', VL contains:
*          if HOWMNY = 'A', the matrix Y of left eigenvectors of T;
*          if HOWMNY = 'B', the matrix Q*Y;
*          if HOWMNY = 'S', the left eigenvectors of T specified by
*                           SELECT, stored consecutively in the columns
*                           of VL, in the same order as their
*                           eigenvalues.
*          Not referenced if SIDE = 'R'.
*
*  LDVL    (input) INTEGER
*          The leading dimension of the array VL.  LDVL >= 1, and if
*          SIDE = 'L' or 'B', LDVL >= N.
*
*  VR      (input/output) COMPLEX array, dimension (LDVR,MM)
*          On entry, if SIDE = 'R' or 'B' and HOWMNY = 'B', VR must
*          contain an N-by-N matrix Q (usually the unitary matrix Q of
*          Schur vectors returned by CHSEQR).
*          On exit, if SIDE = 'R' or 'B', VR contains:
*          if HOWMNY = 'A', the matrix X of right eigenvectors of T;
*          if HOWMNY = 'B', the matrix Q*X;
*          if HOWMNY = 'S', the right eigenvectors of T specified by
*                           SELECT, stored consecutively in the columns
*                           of VR, in the same order as their
*                           eigenvalues.
*          Not referenced if SIDE = 'L'.
*
*  LDVR    (input) INTEGER
*          The leading dimension of the array VR.  LDVR >= 1, and if
*          SIDE = 'R' or 'B'; LDVR >= N.
*
*  MM      (input) INTEGER
*          The number of columns in the arrays VL and/or VR. MM >= M.
*
*  M       (output) INTEGER
*          The number of columns in the arrays VL and/or VR actually
*          used to store the eigenvectors.  If HOWMNY = 'A' or 'B', M
*          is set to N.  Each selected eigenvector occupies one
*          column.
*
*  WORK    (workspace) COMPLEX array, dimension (2*N)
*
*  RWORK   (workspace) REAL array, dimension (N)
*
*  INFO    (output) INTEGER
*          = 0:  successful exit
*          < 0:  if INFO = -i, the i-th argument had an illegal value
*
*  Further Details
*  ===============
*
*  The algorithm used in this program is basically backward (forward)
*  substitution, with scaling to make the the code robust against
*  possible overflow.
*
*  Each eigenvector is normalized so that the element of largest
*  magnitude has magnitude 1; here the magnitude of a complex number
*  (x,y) is taken to be |x| + |y|.
*
*  =====================================================================
*
*     .. Parameters ..
      REAL               ZERO, ONE
      PARAMETER          ( ZERO = 0.0E+0, ONE = 1.0E+0 )
      COMPLEX            CMZERO, CMONE
      PARAMETER          ( CMZERO = ( 0.0E+00.0E+0 ),
     $                   CMONE = ( 1.0E+00.0E+0 ) )
*     ..
*     .. Local Scalars ..
      LOGICAL            ALLV, BOTHV, LEFTV, OVER, RIGHTV, SOMEV
      INTEGER            I, II, IS, J, K, KI
      REAL               OVFL, REMAX, SCALE, SMIN, SMLNUM, ULP, UNFL
      COMPLEX            CDUM
*     ..
*     .. External Functions ..
      LOGICAL            LSAME
      INTEGER            ICAMAX
      REAL               SCASUM, SLAMCH
      EXTERNAL           LSAME, ICAMAX, SCASUM, SLAMCH
*     ..
*     .. External Subroutines ..
      EXTERNAL           CCOPY, CGEMV, CLATRS, CSSCAL, SLABAD, XERBLA
*     ..
*     .. Intrinsic Functions ..
      INTRINSIC          ABSAIMAGCMPLXCONJGMAX, REAL
*     ..
*     .. Statement Functions ..
      REAL               CABS1
*     ..
*     .. Statement Function definitions ..
      CABS1( CDUM ) = ABSREAL( CDUM ) ) + ABSAIMAG( CDUM ) )
*     ..
*     .. Executable Statements ..
*
*     Decode and test the input parameters
*
      BOTHV = LSAME( SIDE, 'B' )
      RIGHTV = LSAME( SIDE, 'R' ) .OR. BOTHV
      LEFTV = LSAME( SIDE, 'L' ) .OR. BOTHV
*
      ALLV = LSAME( HOWMNY, 'A' )
      OVER = LSAME( HOWMNY, 'B' )
      SOMEV = LSAME( HOWMNY, 'S' )
*
*     Set M to the number of columns required to store the selected
*     eigenvectors.
*
      IF( SOMEV ) THEN
         M = 0
         DO 10 J = 1, N
            IFSELECT( J ) )
     $         M = M + 1
   10    CONTINUE
      ELSE
         M = N
      END IF
*
      INFO = 0
      IF.NOT.RIGHTV .AND. .NOT.LEFTV ) THEN
         INFO = -1
      ELSE IF.NOT.ALLV .AND. .NOT.OVER .AND. .NOT.SOMEV ) THEN
         INFO = -2
      ELSE IF( N.LT.0 ) THEN
         INFO = -4
      ELSE IF( LDT.LT.MAX1, N ) ) THEN
         INFO = -6
      ELSE IF( LDVL.LT.1 .OR. ( LEFTV .AND. LDVL.LT.N ) ) THEN
         INFO = -8
      ELSE IF( LDVR.LT.1 .OR. ( RIGHTV .AND. LDVR.LT.N ) ) THEN
         INFO = -10
      ELSE IF( MM.LT.M ) THEN
         INFO = -11
      END IF
      IF( INFO.NE.0 ) THEN
         CALL XERBLA( 'CTREVC'-INFO )
         RETURN
      END IF
*
*     Quick return if possible.
*
      IF( N.EQ.0 )
     $   RETURN
*
*     Set the constants to control overflow.
*
      UNFL = SLAMCH( 'Safe minimum' )
      OVFL = ONE / UNFL
      CALL SLABAD( UNFL, OVFL )
      ULP = SLAMCH( 'Precision' )
      SMLNUM = UNFL*( N / ULP )
*
*     Store the diagonal elements of T in working array WORK.
*
      DO 20 I = 1, N
         WORK( I+N ) = T( I, I )
   20 CONTINUE
*
*     Compute 1-norm of each column of strictly upper triangular
*     part of T to control overflow in triangular solver.
*
      RWORK( 1 ) = ZERO
      DO 30 J = 2, N
         RWORK( J ) = SCASUM( J-1, T( 1, J ), 1 )
   30 CONTINUE
*
      IF( RIGHTV ) THEN
*
*        Compute right eigenvectors.
*
         IS = M
         DO 80 KI = N, 1-1
*
            IF( SOMEV ) THEN
               IF.NOT.SELECT( KI ) )
     $            GO TO 80
            END IF
            SMIN = MAX( ULP*( CABS1( T( KI, KI ) ) ), SMLNUM )
*
            WORK( 1 ) = CMONE
*
*           Form right-hand side.
*
            DO 40 K = 1, KI - 1
               WORK( K ) = -T( K, KI )
   40       CONTINUE
*
*           Solve the triangular system:
*              (T(1:KI-1,1:KI-1) - T(KI,KI))*X = SCALE*WORK.
*
            DO 50 K = 1, KI - 1
               T( K, K ) = T( K, K ) - T( KI, KI )
               IF( CABS1( T( K, K ) ).LT.SMIN )
     $            T( K, K ) = SMIN
   50       CONTINUE
*
            IF( KI.GT.1 ) THEN
               CALL CLATRS( 'Upper''No transpose''Non-unit''Y',
     $                      KI-1, T, LDT, WORK( 1 ), SCALE, RWORK,
     $                      INFO )
               WORK( KI ) = SCALE
            END IF
*
*           Copy the vector x or Q*x to VR and normalize.
*
            IF.NOT.OVER ) THEN
               CALL CCOPY( KI, WORK( 1 ), 1, VR( 1, IS ), 1 )
*
               II = ICAMAX( KI, VR( 1, IS ), 1 )
               REMAX = ONE / CABS1( VR( II, IS ) )
               CALL CSSCAL( KI, REMAX, VR( 1, IS ), 1 )
*
               DO 60 K = KI + 1, N
                  VR( K, IS ) = CMZERO
   60          CONTINUE
            ELSE
               IF( KI.GT.1 )
     $            CALL CGEMV( 'N', N, KI-1, CMONE, VR, LDVR, WORK( 1 ),
     $                        1CMPLXSCALE ), VR( 1, KI ), 1 )
*
               II = ICAMAX( N, VR( 1, KI ), 1 )
               REMAX = ONE / CABS1( VR( II, KI ) )
               CALL CSSCAL( N, REMAX, VR( 1, KI ), 1 )
            END IF
*
*           Set back the original diagonal elements of T.
*
            DO 70 K = 1, KI - 1
               T( K, K ) = WORK( K+N )
   70       CONTINUE
*
            IS = IS - 1
   80    CONTINUE
      END IF
*
      IF( LEFTV ) THEN
*
*        Compute left eigenvectors.
*
         IS = 1
         DO 130 KI = 1, N
*
            IF( SOMEV ) THEN
               IF.NOT.SELECT( KI ) )
     $            GO TO 130
            END IF
            SMIN = MAX( ULP*( CABS1( T( KI, KI ) ) ), SMLNUM )
*
            WORK( N ) = CMONE
*
*           Form right-hand side.
*
            DO 90 K = KI + 1, N
               WORK( K ) = -CONJG( T( KI, K ) )
   90       CONTINUE
*
*           Solve the triangular system:
*              (T(KI+1:N,KI+1:N) - T(KI,KI))**H*X = SCALE*WORK.
*
            DO 100 K = KI + 1, N
               T( K, K ) = T( K, K ) - T( KI, KI )
               IF( CABS1( T( K, K ) ).LT.SMIN )
     $            T( K, K ) = SMIN
  100       CONTINUE
*
            IF( KI.LT.N ) THEN
               CALL CLATRS( 'Upper''Conjugate transpose''Non-unit',
     $                      'Y', N-KI, T( KI+1, KI+1 ), LDT,
     $                      WORK( KI+1 ), SCALE, RWORK, INFO )
               WORK( KI ) = SCALE
            END IF
*
*           Copy the vector x or Q*x to VL and normalize.
*
            IF.NOT.OVER ) THEN
               CALL CCOPY( N-KI+1, WORK( KI ), 1, VL( KI, IS ), 1 )
*
               II = ICAMAX( N-KI+1, VL( KI, IS ), 1 ) + KI - 1
               REMAX = ONE / CABS1( VL( II, IS ) )
               CALL CSSCAL( N-KI+1, REMAX, VL( KI, IS ), 1 )
*
               DO 110 K = 1, KI - 1
                  VL( K, IS ) = CMZERO
  110          CONTINUE
            ELSE
               IF( KI.LT.N )
     $            CALL CGEMV( 'N', N, N-KI, CMONE, VL( 1, KI+1 ), LDVL,
     $                        WORK( KI+1 ), 1CMPLXSCALE ),
     $                        VL( 1, KI ), 1 )
*
               II = ICAMAX( N, VL( 1, KI ), 1 )
               REMAX = ONE / CABS1( VL( II, KI ) )
               CALL CSSCAL( N, REMAX, VL( 1, KI ), 1 )
            END IF
*
*           Set back the original diagonal elements of T.
*
            DO 120 K = KI + 1, N
               T( K, K ) = WORK( K+N )
  120       CONTINUE
*
            IS = IS + 1
  130    CONTINUE
      END IF
*
      RETURN
*
*     End of CTREVC
*
      END