1
       2
       3
       4
       5
       6
       7
       8
       9
      10
      11
      12
      13
      14
      15
      16
      17
      18
      19
      20
      21
      22
      23
      24
      25
      26
      27
      28
      29
      30
      31
      32
      33
      34
      35
      36
      37
      38
      39
      40
      41
      42
      43
      44
      45
      46
      47
      48
      49
      50
      51
      52
      53
      54
      55
      56
      57
      58
      59
      60
      61
      62
      63
      64
      65
      66
      67
      68
      69
      70
      71
      72
      73
      74
      75
      76
      77
      78
      79
      80
      81
      82
      83
      84
      85
      86
      87
      88
      89
      90
      91
      92
      93
      94
      95
      96
      97
      98
      99
     100
     101
     102
     103
     104
     105
     106
     107
     108
     109
     110
     111
     112
     113
     114
     115
     116
     117
     118
     119
     120
     121
     122
     123
     124
     125
     126
     127
     128
     129
     130
     131
     132
     133
     134
     135
     136
     137
     138
     139
     140
     141
     142
     143
     144
     145
     146
     147
     148
     149
     150
     151
     152
     153
     154
     155
     156
     157
     158
     159
     160
     161
     162
     163
     164
     165
     166
     167
     168
     169
     170
     171
     172
     173
     174
     175
     176
     177
     178
     179
     180
     181
     182
     183
     184
     185
     186
     187
     188
     189
     190
     191
     192
     193
     194
     195
     196
     197
     198
     199
     200
     201
     202
     203
     204
     205
     206
     207
     208
     209
     210
     211
     212
     213
     214
     215
     216
     217
     218
     219
     220
     221
     222
     223
     224
     225
     226
     227
     228
     229
     230
     231
     232
     233
     234
     235
     236
     237
     238
     239
     240
     241
     242
     243
     244
     245
     246
     247
     248
     249
     250
     251
     252
     253
     254
     255
     256
     257
     258
     259
     260
     261
     262
     263
     264
     265
     266
     267
     268
     269
     270
     271
     272
     273
     274
     275
     276
     277
     278
     279
     280
     281
     282
     283
     284
     285
     286
     287
     288
     289
     290
     291
     292
     293
     294
     295
     296
     297
     298
     299
     300
     301
     302
     303
     304
     305
     306
     307
     308
     309
     310
     311
     312
     313
     314
     315
     316
     317
     318
     319
     320
     321
     322
     323
     324
     325
     326
     327
     328
     329
     330
     331
     332
     333
     334
     335
     336
     337
     338
     339
     340
     341
     342
     343
     344
     345
     346
     347
     348
     349
     350
     351
     352
     353
     354
     355
     356
     357
      SUBROUTINE CTRSNA( JOB, HOWMNY, SELECT, N, T, LDT, VL, LDVL, VR,
     $                   LDVR, S, SEP, MM, M, WORK, LDWORK, RWORK,
     $                   INFO )
*
*  -- LAPACK routine (version 3.3.1) --
*  -- LAPACK is a software package provided by Univ. of Tennessee,    --
*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
*  -- April 2011                                                      --
*
*     Modified to call CLACN2 in place of CLACON, 10 Feb 03, SJH.
*
*     .. Scalar Arguments ..
      CHARACTER          HOWMNY, JOB
      INTEGER            INFO, LDT, LDVL, LDVR, LDWORK, M, MM, N
*     ..
*     .. Array Arguments ..
      LOGICAL            SELECT* )
      REAL               RWORK( * ), S( * ), SEP( * )
      COMPLEX            T( LDT, * ), VL( LDVL, * ), VR( LDVR, * ),
     $                   WORK( LDWORK, * )
*     ..
*
*  Purpose
*  =======
*
*  CTRSNA estimates reciprocal condition numbers for specified
*  eigenvalues and/or right eigenvectors of a complex upper triangular
*  matrix T (or of any matrix Q*T*Q**H with Q unitary).
*
*  Arguments
*  =========
*
*  JOB     (input) CHARACTER*1
*          Specifies whether condition numbers are required for
*          eigenvalues (S) or eigenvectors (SEP):
*          = 'E': for eigenvalues only (S);
*          = 'V': for eigenvectors only (SEP);
*          = 'B': for both eigenvalues and eigenvectors (S and SEP).
*
*  HOWMNY  (input) CHARACTER*1
*          = 'A': compute condition numbers for all eigenpairs;
*          = 'S': compute condition numbers for selected eigenpairs
*                 specified by the array SELECT.
*
*  SELECT  (input) LOGICAL array, dimension (N)
*          If HOWMNY = 'S', SELECT specifies the eigenpairs for which
*          condition numbers are required. To select condition numbers
*          for the j-th eigenpair, SELECT(j) must be set to .TRUE..
*          If HOWMNY = 'A', SELECT is not referenced.
*
*  N       (input) INTEGER
*          The order of the matrix T. N >= 0.
*
*  T       (input) COMPLEX array, dimension (LDT,N)
*          The upper triangular matrix T.
*
*  LDT     (input) INTEGER
*          The leading dimension of the array T. LDT >= max(1,N).
*
*  VL      (input) COMPLEX array, dimension (LDVL,M)
*          If JOB = 'E' or 'B', VL must contain left eigenvectors of T
*          (or of any Q*T*Q**H with Q unitary), corresponding to the
*          eigenpairs specified by HOWMNY and SELECT. The eigenvectors
*          must be stored in consecutive columns of VL, as returned by
*          CHSEIN or CTREVC.
*          If JOB = 'V', VL is not referenced.
*
*  LDVL    (input) INTEGER
*          The leading dimension of the array VL.
*          LDVL >= 1; and if JOB = 'E' or 'B', LDVL >= N.
*
*  VR      (input) COMPLEX array, dimension (LDVR,M)
*          If JOB = 'E' or 'B', VR must contain right eigenvectors of T
*          (or of any Q*T*Q**H with Q unitary), corresponding to the
*          eigenpairs specified by HOWMNY and SELECT. The eigenvectors
*          must be stored in consecutive columns of VR, as returned by
*          CHSEIN or CTREVC.
*          If JOB = 'V', VR is not referenced.
*
*  LDVR    (input) INTEGER
*          The leading dimension of the array VR.
*          LDVR >= 1; and if JOB = 'E' or 'B', LDVR >= N.
*
*  S       (output) REAL array, dimension (MM)
*          If JOB = 'E' or 'B', the reciprocal condition numbers of the
*          selected eigenvalues, stored in consecutive elements of the
*          array. Thus S(j), SEP(j), and the j-th columns of VL and VR
*          all correspond to the same eigenpair (but not in general the
*          j-th eigenpair, unless all eigenpairs are selected).
*          If JOB = 'V', S is not referenced.
*
*  SEP     (output) REAL array, dimension (MM)
*          If JOB = 'V' or 'B', the estimated reciprocal condition
*          numbers of the selected eigenvectors, stored in consecutive
*          elements of the array.
*          If JOB = 'E', SEP is not referenced.
*
*  MM      (input) INTEGER
*          The number of elements in the arrays S (if JOB = 'E' or 'B')
*           and/or SEP (if JOB = 'V' or 'B'). MM >= M.
*
*  M       (output) INTEGER
*          The number of elements of the arrays S and/or SEP actually
*          used to store the estimated condition numbers.
*          If HOWMNY = 'A', M is set to N.
*
*  WORK    (workspace) COMPLEX array, dimension (LDWORK,N+6)
*          If JOB = 'E', WORK is not referenced.
*
*  LDWORK  (input) INTEGER
*          The leading dimension of the array WORK.
*          LDWORK >= 1; and if JOB = 'V' or 'B', LDWORK >= N.
*
*  RWORK   (workspace) REAL array, dimension (N)
*          If JOB = 'E', RWORK is not referenced.
*
*  INFO    (output) INTEGER
*          = 0: successful exit
*          < 0: if INFO = -i, the i-th argument had an illegal value
*
*  Further Details
*  ===============
*
*  The reciprocal of the condition number of an eigenvalue lambda is
*  defined as
*
*          S(lambda) = |v**H*u| / (norm(u)*norm(v))
*
*  where u and v are the right and left eigenvectors of T corresponding
*  to lambda; v**H denotes the conjugate transpose of v, and norm(u)
*  denotes the Euclidean norm. These reciprocal condition numbers always
*  lie between zero (very badly conditioned) and one (very well
*  conditioned). If n = 1, S(lambda) is defined to be 1.
*
*  An approximate error bound for a computed eigenvalue W(i) is given by
*
*                      EPS * norm(T) / S(i)
*
*  where EPS is the machine precision.
*
*  The reciprocal of the condition number of the right eigenvector u
*  corresponding to lambda is defined as follows. Suppose
*
*              T = ( lambda  c  )
*                  (   0    T22 )
*
*  Then the reciprocal condition number is
*
*          SEP( lambda, T22 ) = sigma-min( T22 - lambda*I )
*
*  where sigma-min denotes the smallest singular value. We approximate
*  the smallest singular value by the reciprocal of an estimate of the
*  one-norm of the inverse of T22 - lambda*I. If n = 1, SEP(1) is
*  defined to be abs(T(1,1)).
*
*  An approximate error bound for a computed right eigenvector VR(i)
*  is given by
*
*                      EPS * norm(T) / SEP(i)
*
*  =====================================================================
*
*     .. Parameters ..
      REAL               ZERO, ONE
      PARAMETER          ( ZERO = 0.0E+0, ONE = 1.0+0 )
*     ..
*     .. Local Scalars ..
      LOGICAL            SOMCON, WANTBH, WANTS, WANTSP
      CHARACTER          NORMIN
      INTEGER            I, IERR, IX, J, K, KASE, KS
      REAL               BIGNUM, EPS, EST, LNRM, RNRM, SCALE, SMLNUM,
     $                   XNORM
      COMPLEX            CDUM, PROD
*     ..
*     .. Local Arrays ..
      INTEGER            ISAVE( 3 )
      COMPLEX            DUMMY( 1 )
*     ..
*     .. External Functions ..
      LOGICAL            LSAME
      INTEGER            ICAMAX
      REAL               SCNRM2, SLAMCH
      COMPLEX            CDOTC
      EXTERNAL           LSAME, ICAMAX, SCNRM2, SLAMCH, CDOTC
*     ..
*     .. External Subroutines ..
      EXTERNAL           CLACN2, CLACPY, CLATRS, CSRSCL, CTREXC, SLABAD,
     $                   XERBLA
*     ..
*     .. Intrinsic Functions ..
      INTRINSIC          ABSAIMAGMAX, REAL
*     ..
*     .. Statement Functions ..
      REAL               CABS1
*     ..
*     .. Statement Function definitions ..
      CABS1( CDUM ) = ABSREAL( CDUM ) ) + ABSAIMAG( CDUM ) )
*     ..
*     .. Executable Statements ..
*
*     Decode and test the input parameters
*
      WANTBH = LSAME( JOB, 'B' )
      WANTS = LSAME( JOB, 'E' ) .OR. WANTBH
      WANTSP = LSAME( JOB, 'V' ) .OR. WANTBH
*
      SOMCON = LSAME( HOWMNY, 'S' )
*
*     Set M to the number of eigenpairs for which condition numbers are
*     to be computed.
*
      IF( SOMCON ) THEN
         M = 0
         DO 10 J = 1, N
            IFSELECT( J ) )
     $         M = M + 1
   10    CONTINUE
      ELSE
         M = N
      END IF
*
      INFO = 0
      IF.NOT.WANTS .AND. .NOT.WANTSP ) THEN
         INFO = -1
      ELSE IF.NOT.LSAME( HOWMNY, 'A' ) .AND. .NOT.SOMCON ) THEN
         INFO = -2
      ELSE IF( N.LT.0 ) THEN
         INFO = -4
      ELSE IF( LDT.LT.MAX1, N ) ) THEN
         INFO = -6
      ELSE IF( LDVL.LT.1 .OR. ( WANTS .AND. LDVL.LT.N ) ) THEN
         INFO = -8
      ELSE IF( LDVR.LT.1 .OR. ( WANTS .AND. LDVR.LT.N ) ) THEN
         INFO = -10
      ELSE IF( MM.LT.M ) THEN
         INFO = -13
      ELSE IF( LDWORK.LT.1 .OR. ( WANTSP .AND. LDWORK.LT.N ) ) THEN
         INFO = -16
      END IF
      IF( INFO.NE.0 ) THEN
         CALL XERBLA( 'CTRSNA'-INFO )
         RETURN
      END IF
*
*     Quick return if possible
*
      IF( N.EQ.0 )
     $   RETURN
*
      IF( N.EQ.1 ) THEN
         IF( SOMCON ) THEN
            IF.NOT.SELECT1 ) )
     $         RETURN
         END IF
         IF( WANTS )
     $      S( 1 ) = ONE
         IF( WANTSP )
     $      SEP( 1 ) = ABS( T( 11 ) )
         RETURN
      END IF
*
*     Get machine constants
*
      EPS = SLAMCH( 'P' )
      SMLNUM = SLAMCH( 'S' ) / EPS
      BIGNUM = ONE / SMLNUM
      CALL SLABAD( SMLNUM, BIGNUM )
*
      KS = 1
      DO 50 K = 1, N
*
         IF( SOMCON ) THEN
            IF.NOT.SELECT( K ) )
     $         GO TO 50
         END IF
*
         IF( WANTS ) THEN
*
*           Compute the reciprocal condition number of the k-th
*           eigenvalue.
*
            PROD = CDOTC( N, VR( 1, KS ), 1, VL( 1, KS ), 1 )
            RNRM = SCNRM2( N, VR( 1, KS ), 1 )
            LNRM = SCNRM2( N, VL( 1, KS ), 1 )
            S( KS ) = ABS( PROD ) / ( RNRM*LNRM )
*
         END IF
*
         IF( WANTSP ) THEN
*
*           Estimate the reciprocal condition number of the k-th
*           eigenvector.
*
*           Copy the matrix T to the array WORK and swap the k-th
*           diagonal element to the (1,1) position.
*
            CALL CLACPY( 'Full', N, N, T, LDT, WORK, LDWORK )
            CALL CTREXC( 'No Q', N, WORK, LDWORK, DUMMY, 1, K, 1, IERR )
*
*           Form  C = T22 - lambda*I in WORK(2:N,2:N).
*
            DO 20 I = 2, N
               WORK( I, I ) = WORK( I, I ) - WORK( 11 )
   20       CONTINUE
*
*           Estimate a lower bound for the 1-norm of inv(C**H). The 1st
*           and (N+1)th columns of WORK are used to store work vectors.
*
            SEP( KS ) = ZERO
            EST = ZERO
            KASE = 0
            NORMIN = 'N'
   30       CONTINUE
            CALL CLACN2( N-1, WORK( 1, N+1 ), WORK, EST, KASE, ISAVE )
*
            IF( KASE.NE.0 ) THEN
               IF( KASE.EQ.1 ) THEN
*
*                 Solve C**H*x = scale*b
*
                  CALL CLATRS( 'Upper''Conjugate transpose',
     $                         'Nonunit', NORMIN, N-1, WORK( 22 ),
     $                         LDWORK, WORK, SCALE, RWORK, IERR )
               ELSE
*
*                 Solve C*x = scale*b
*
                  CALL CLATRS( 'Upper''No transpose''Nonunit',
     $                         NORMIN, N-1, WORK( 22 ), LDWORK, WORK,
     $                         SCALE, RWORK, IERR )
               END IF
               NORMIN = 'Y'
               IFSCALE.NE.ONE ) THEN
*
*                 Multiply by 1/SCALE if doing so will not cause
*                 overflow.
*
                  IX = ICAMAX( N-1, WORK, 1 )
                  XNORM = CABS1( WORK( IX, 1 ) )
                  IFSCALE.LT.XNORM*SMLNUM .OR. SCALE.EQ.ZERO )
     $               GO TO 40
                  CALL CSRSCL( N, SCALE, WORK, 1 )
               END IF
               GO TO 30
            END IF
*
            SEP( KS ) = ONE / MAX( EST, SMLNUM )
         END IF
*
   40    CONTINUE
         KS = KS + 1
   50 CONTINUE
      RETURN
*
*     End of CTRSNA
*
      END