1
       2
       3
       4
       5
       6
       7
       8
       9
      10
      11
      12
      13
      14
      15
      16
      17
      18
      19
      20
      21
      22
      23
      24
      25
      26
      27
      28
      29
      30
      31
      32
      33
      34
      35
      36
      37
      38
      39
      40
      41
      42
      43
      44
      45
      46
      47
      48
      49
      50
      51
      52
      53
      54
      55
      56
      57
      58
      59
      60
      61
      62
      63
      64
      65
      66
      67
      68
      69
      70
      71
      72
      73
      74
      75
      76
      77
      78
      79
      80
      81
      82
      83
      84
      85
      86
      87
      88
      89
      90
      91
      92
      93
      94
      95
      96
      97
      98
      99
     100
     101
     102
     103
     104
     105
     106
     107
     108
     109
     110
     111
     112
     113
     114
     115
     116
     117
     118
     119
     120
     121
     122
     123
     124
     125
     126
     127
     128
     129
     130
     131
     132
     133
     134
     135
     136
     137
     138
     139
     140
     141
     142
     143
     144
     145
     146
     147
     148
     149
     150
     151
     152
     153
     154
     155
     156
     157
     158
     159
     160
     161
     162
     163
     164
     165
     166
     167
     168
     169
     170
     171
     172
     173
     174
     175
     176
     177
     178
     179
     180
     181
     182
     183
     184
     185
     186
     187
     188
     189
     190
     191
     192
     193
     194
     195
     196
     197
     198
     199
     200
     201
     202
     203
     204
     205
     206
     207
     208
     209
     210
     211
     212
     213
     214
     215
     216
     217
     218
     219
     220
     221
     222
     223
     224
     225
     226
     227
     228
     229
     230
     231
     232
     233
     234
     235
     236
     237
     238
     239
     240
     241
     242
     243
     244
     245
     246
     247
     248
     249
     250
     251
     252
     253
     254
     255
     256
     257
     258
     259
     260
     261
     262
     263
     264
     265
     266
     267
     268
     269
     270
     271
     272
     273
     274
     275
     276
     277
     278
     279
     280
     281
     282
     283
     284
     285
     286
     287
     288
     289
     290
      SUBROUTINE CUNMBR( VECT, SIDE, TRANS, M, N, K, A, LDA, TAU, C,
     $                   LDC, WORK, LWORK, INFO )
*
*  -- LAPACK routine (version 3.2) --
*  -- LAPACK is a software package provided by Univ. of Tennessee,    --
*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
*     November 2006
*
*     .. Scalar Arguments ..
      CHARACTER          SIDE, TRANS, VECT
      INTEGER            INFO, K, LDA, LDC, LWORK, M, N
*     ..
*     .. Array Arguments ..
      COMPLEX            A( LDA, * ), C( LDC, * ), TAU( * ),
     $                   WORK( * )
*     ..
*
*  Purpose
*  =======
*
*  If VECT = 'Q', CUNMBR overwrites the general complex M-by-N matrix C
*  with
*                  SIDE = 'L'     SIDE = 'R'
*  TRANS = 'N':      Q * C          C * Q
*  TRANS = 'C':      Q**H * C       C * Q**H
*
*  If VECT = 'P', CUNMBR overwrites the general complex M-by-N matrix C
*  with
*                  SIDE = 'L'     SIDE = 'R'
*  TRANS = 'N':      P * C          C * P
*  TRANS = 'C':      P**H * C       C * P**H
*
*  Here Q and P**H are the unitary matrices determined by CGEBRD when
*  reducing a complex matrix A to bidiagonal form: A = Q * B * P**H. Q
*  and P**H are defined as products of elementary reflectors H(i) and
*  G(i) respectively.
*
*  Let nq = m if SIDE = 'L' and nq = n if SIDE = 'R'. Thus nq is the
*  order of the unitary matrix Q or P**H that is applied.
*
*  If VECT = 'Q', A is assumed to have been an NQ-by-K matrix:
*  if nq >= k, Q = H(1) H(2) . . . H(k);
*  if nq < k, Q = H(1) H(2) . . . H(nq-1).
*
*  If VECT = 'P', A is assumed to have been a K-by-NQ matrix:
*  if k < nq, P = G(1) G(2) . . . G(k);
*  if k >= nq, P = G(1) G(2) . . . G(nq-1).
*
*  Arguments
*  =========
*
*  VECT    (input) CHARACTER*1
*          = 'Q': apply Q or Q**H;
*          = 'P': apply P or P**H.
*
*  SIDE    (input) CHARACTER*1
*          = 'L': apply Q, Q**H, P or P**H from the Left;
*          = 'R': apply Q, Q**H, P or P**H from the Right.
*
*  TRANS   (input) CHARACTER*1
*          = 'N':  No transpose, apply Q or P;
*          = 'C':  Conjugate transpose, apply Q**H or P**H.
*
*  M       (input) INTEGER
*          The number of rows of the matrix C. M >= 0.
*
*  N       (input) INTEGER
*          The number of columns of the matrix C. N >= 0.
*
*  K       (input) INTEGER
*          If VECT = 'Q', the number of columns in the original
*          matrix reduced by CGEBRD.
*          If VECT = 'P', the number of rows in the original
*          matrix reduced by CGEBRD.
*          K >= 0.
*
*  A       (input) COMPLEX array, dimension
*                                (LDA,min(nq,K)) if VECT = 'Q'
*                                (LDA,nq)        if VECT = 'P'
*          The vectors which define the elementary reflectors H(i) and
*          G(i), whose products determine the matrices Q and P, as
*          returned by CGEBRD.
*
*  LDA     (input) INTEGER
*          The leading dimension of the array A.
*          If VECT = 'Q', LDA >= max(1,nq);
*          if VECT = 'P', LDA >= max(1,min(nq,K)).
*
*  TAU     (input) COMPLEX array, dimension (min(nq,K))
*          TAU(i) must contain the scalar factor of the elementary
*          reflector H(i) or G(i) which determines Q or P, as returned
*          by CGEBRD in the array argument TAUQ or TAUP.
*
*  C       (input/output) COMPLEX array, dimension (LDC,N)
*          On entry, the M-by-N matrix C.
*          On exit, C is overwritten by Q*C or Q**H*C or C*Q**H or C*Q
*          or P*C or P**H*C or C*P or C*P**H.
*
*  LDC     (input) INTEGER
*          The leading dimension of the array C. LDC >= max(1,M).
*
*  WORK    (workspace/output) COMPLEX array, dimension (MAX(1,LWORK))
*          On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
*
*  LWORK   (input) INTEGER
*          The dimension of the array WORK.
*          If SIDE = 'L', LWORK >= max(1,N);
*          if SIDE = 'R', LWORK >= max(1,M);
*          if N = 0 or M = 0, LWORK >= 1.
*          For optimum performance LWORK >= max(1,N*NB) if SIDE = 'L',
*          and LWORK >= max(1,M*NB) if SIDE = 'R', where NB is the
*          optimal blocksize. (NB = 0 if M = 0 or N = 0.)
*
*          If LWORK = -1, then a workspace query is assumed; the routine
*          only calculates the optimal size of the WORK array, returns
*          this value as the first entry of the WORK array, and no error
*          message related to LWORK is issued by XERBLA.
*
*  INFO    (output) INTEGER
*          = 0:  successful exit
*          < 0:  if INFO = -i, the i-th argument had an illegal value
*
*  =====================================================================
*
*     .. Local Scalars ..
      LOGICAL            APPLYQ, LEFT, LQUERY, NOTRAN
      CHARACTER          TRANST
      INTEGER            I1, I2, IINFO, LWKOPT, MI, NB, NI, NQ, NW
*     ..
*     .. External Functions ..
      LOGICAL            LSAME
      INTEGER            ILAENV
      EXTERNAL           ILAENV, LSAME
*     ..
*     .. External Subroutines ..
      EXTERNAL           CUNMLQ, CUNMQR, XERBLA
*     ..
*     .. Intrinsic Functions ..
      INTRINSIC          MAXMIN
*     ..
*     .. Executable Statements ..
*
*     Test the input arguments
*
      INFO = 0
      APPLYQ = LSAME( VECT, 'Q' )
      LEFT = LSAME( SIDE, 'L' )
      NOTRAN = LSAME( TRANS, 'N' )
      LQUERY = ( LWORK.EQ.-1 )
*
*     NQ is the order of Q or P and NW is the minimum dimension of WORK
*
      IF( LEFT ) THEN
         NQ = M
         NW = N
      ELSE
         NQ = N
         NW = M
      END IF
      IF( M.EQ.0 .OR. N.EQ.0 ) THEN
         NW = 0
      END IF
      IF.NOT.APPLYQ .AND. .NOT.LSAME( VECT, 'P' ) ) THEN
         INFO = -1
      ELSE IF.NOT.LEFT .AND. .NOT.LSAME( SIDE, 'R' ) ) THEN
         INFO = -2
      ELSE IF.NOT.NOTRAN .AND. .NOT.LSAME( TRANS, 'C' ) ) THEN
         INFO = -3
      ELSE IF( M.LT.0 ) THEN
         INFO = -4
      ELSE IF( N.LT.0 ) THEN
         INFO = -5
      ELSE IF( K.LT.0 ) THEN
         INFO = -6
      ELSE IF( ( APPLYQ .AND. LDA.LT.MAX1, NQ ) ) .OR.
     $         ( .NOT.APPLYQ .AND. LDA.LT.MAX1MIN( NQ, K ) ) ) )
     $          THEN
         INFO = -8
      ELSE IF( LDC.LT.MAX1, M ) ) THEN
         INFO = -11
      ELSE IF( LWORK.LT.MAX1, NW ) .AND. .NOT.LQUERY ) THEN
         INFO = -13
      END IF
*
      IF( INFO.EQ.0 ) THEN
         IF( NW.GT.0 ) THEN
            IF( APPLYQ ) THEN
               IF( LEFT ) THEN
                  NB = ILAENV( 1'CUNMQR', SIDE // TRANS, M-1, N, M-1,
     $                         -1 )
               ELSE
                  NB = ILAENV( 1'CUNMQR', SIDE // TRANS, M, N-1, N-1,
     $                         -1 )
               END IF
            ELSE
               IF( LEFT ) THEN
                  NB = ILAENV( 1'CUNMLQ', SIDE // TRANS, M-1, N, M-1,
     $                         -1 )
               ELSE
                  NB = ILAENV( 1'CUNMLQ', SIDE // TRANS, M, N-1, N-1,
     $                         -1 )
               END IF
            END IF
            LWKOPT = MAX1, NW*NB )
         ELSE
            LWKOPT = 1
         END IF
         WORK( 1 ) = LWKOPT
      END IF
*
      IF( INFO.NE.0 ) THEN
         CALL XERBLA( 'CUNMBR'-INFO )
         RETURN
      ELSE IF( LQUERY ) THEN
         RETURN
      END IF
*
*     Quick return if possible
*
      IF( M.EQ.0 .OR. N.EQ.0 )
     $   RETURN
*
      IF( APPLYQ ) THEN
*
*        Apply Q
*
         IF( NQ.GE.K ) THEN
*
*           Q was determined by a call to CGEBRD with nq >= k
*
            CALL CUNMQR( SIDE, TRANS, M, N, K, A, LDA, TAU, C, LDC,
     $                   WORK, LWORK, IINFO )
         ELSE IF( NQ.GT.1 ) THEN
*
*           Q was determined by a call to CGEBRD with nq < k
*
            IF( LEFT ) THEN
               MI = M - 1
               NI = N
               I1 = 2
               I2 = 1
            ELSE
               MI = M
               NI = N - 1
               I1 = 1
               I2 = 2
            END IF
            CALL CUNMQR( SIDE, TRANS, MI, NI, NQ-1, A( 21 ), LDA, TAU,
     $                   C( I1, I2 ), LDC, WORK, LWORK, IINFO )
         END IF
      ELSE
*
*        Apply P
*
         IF( NOTRAN ) THEN
            TRANST = 'C'
         ELSE
            TRANST = 'N'
         END IF
         IF( NQ.GT.K ) THEN
*
*           P was determined by a call to CGEBRD with nq > k
*
            CALL CUNMLQ( SIDE, TRANST, M, N, K, A, LDA, TAU, C, LDC,
     $                   WORK, LWORK, IINFO )
         ELSE IF( NQ.GT.1 ) THEN
*
*           P was determined by a call to CGEBRD with nq <= k
*
            IF( LEFT ) THEN
               MI = M - 1
               NI = N
               I1 = 2
               I2 = 1
            ELSE
               MI = M
               NI = N - 1
               I1 = 1
               I2 = 2
            END IF
            CALL CUNMLQ( SIDE, TRANST, MI, NI, NQ-1, A( 12 ), LDA,
     $                   TAU, C( I1, I2 ), LDC, WORK, LWORK, IINFO )
         END IF
      END IF
      WORK( 1 ) = LWKOPT
      RETURN
*
*     End of CUNMBR
*
      END