1
       2
       3
       4
       5
       6
       7
       8
       9
      10
      11
      12
      13
      14
      15
      16
      17
      18
      19
      20
      21
      22
      23
      24
      25
      26
      27
      28
      29
      30
      31
      32
      33
      34
      35
      36
      37
      38
      39
      40
      41
      42
      43
      44
      45
      46
      47
      48
      49
      50
      51
      52
      53
      54
      55
      56
      57
      58
      59
      60
      61
      62
      63
      64
      65
      66
      67
      68
      69
      70
      71
      72
      73
      74
      75
      76
      77
      78
      79
      80
      81
      82
      83
      84
      85
      86
      87
      88
      89
      90
      91
      92
      93
      94
      95
      96
      97
      98
      99
     100
     101
     102
     103
     104
     105
     106
     107
     108
     109
     110
     111
     112
     113
     114
     115
     116
     117
     118
     119
     120
     121
     122
     123
     124
     125
     126
     127
     128
     129
     130
     131
     132
     133
     134
     135
     136
     137
     138
     139
     140
     141
     142
     143
     144
     145
     146
     147
     148
     149
     150
     151
     152
     153
     154
     155
     156
     157
     158
     159
     160
     161
     162
     163
     164
     165
     166
     167
     168
     169
     170
     171
     172
     173
     174
     175
     176
     177
     178
     179
     180
     181
     182
     183
     184
     185
     186
     187
     188
     189
     190
     191
     192
     193
     194
     195
     196
     197
     198
     199
     200
     201
     202
     203
     204
     205
     206
     207
     208
     209
     210
     211
     212
     213
     214
     215
     216
     217
     218
     219
     220
     221
     222
     223
     224
     225
     226
     227
     228
     229
     230
     231
     232
     233
     234
     235
     236
     237
     238
     239
     240
     241
     242
     243
     244
     245
     246
     247
     248
     249
     250
     251
     252
     253
     254
     255
     256
     257
     258
     259
     260
     261
     262
     263
     264
     265
     266
     267
     268
     269
     270
     271
     272
     273
     274
     275
     276
     277
     278
     279
     280
     281
     282
     283
     284
     285
     286
     287
     288
     289
     290
     291
     292
     293
     294
     295
     296
     297
     298
     299
     300
     301
     302
     303
     304
     305
     306
     307
     308
     309
     310
     311
     312
     313
     314
     315
     316
     317
     318
     319
     320
     321
     322
     323
     324
     325
     326
     327
     328
     329
     330
     331
     332
     333
     334
     335
     336
     337
     338
     339
     340
     341
     342
     343
     344
     345
     346
     347
     348
     349
     350
     351
     352
     353
     354
     355
     356
     357
     358
     359
     360
     361
     362
     363
     364
     365
     366
     367
     368
     369
     370
     371
     372
     373
     374
     375
     376
     377
     378
     379
     380
     381
     382
     383
     384
     385
     386
     387
     388
     389
     390
     391
     392
     393
     394
     395
     396
     397
     398
     399
     400
     401
     402
     403
     404
     405
     406
     407
     408
     409
     410
     411
     412
     413
     414
     415
     416
     417
     418
     419
     420
     421
     422
     423
     424
     425
     426
     427
     428
     429
     430
     431
     432
     433
     434
     435
     436
     437
     438
     439
     440
     441
     442
     443
     444
      SUBROUTINE DGBBRD( VECT, M, N, NCC, KL, KU, AB, LDAB, D, E, Q,
     $                   LDQ, PT, LDPT, C, LDC, WORK, INFO )
*
*  -- LAPACK routine (version 3.3.1) --
*  -- LAPACK is a software package provided by Univ. of Tennessee,    --
*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
*  -- April 2011                                                      --
*
*     .. Scalar Arguments ..
      CHARACTER          VECT
      INTEGER            INFO, KL, KU, LDAB, LDC, LDPT, LDQ, M, N, NCC
*     ..
*     .. Array Arguments ..
      DOUBLE PRECISION   AB( LDAB, * ), C( LDC, * ), D( * ), E( * ),
     $                   PT( LDPT, * ), Q( LDQ, * ), WORK( * )
*     ..
*
*  Purpose
*  =======
*
*  DGBBRD reduces a real general m-by-n band matrix A to upper
*  bidiagonal form B by an orthogonal transformation: Q**T * A * P = B.
*
*  The routine computes B, and optionally forms Q or P**T, or computes
*  Q**T*C for a given matrix C.
*
*  Arguments
*  =========
*
*  VECT    (input) CHARACTER*1
*          Specifies whether or not the matrices Q and P**T are to be
*          formed.
*          = 'N': do not form Q or P**T;
*          = 'Q': form Q only;
*          = 'P': form P**T only;
*          = 'B': form both.
*
*  M       (input) INTEGER
*          The number of rows of the matrix A.  M >= 0.
*
*  N       (input) INTEGER
*          The number of columns of the matrix A.  N >= 0.
*
*  NCC     (input) INTEGER
*          The number of columns of the matrix C.  NCC >= 0.
*
*  KL      (input) INTEGER
*          The number of subdiagonals of the matrix A. KL >= 0.
*
*  KU      (input) INTEGER
*          The number of superdiagonals of the matrix A. KU >= 0.
*
*  AB      (input/output) DOUBLE PRECISION array, dimension (LDAB,N)
*          On entry, the m-by-n band matrix A, stored in rows 1 to
*          KL+KU+1. The j-th column of A is stored in the j-th column of
*          the array AB as follows:
*          AB(ku+1+i-j,j) = A(i,j) for max(1,j-ku)<=i<=min(m,j+kl).
*          On exit, A is overwritten by values generated during the
*          reduction.
*
*  LDAB    (input) INTEGER
*          The leading dimension of the array A. LDAB >= KL+KU+1.
*
*  D       (output) DOUBLE PRECISION array, dimension (min(M,N))
*          The diagonal elements of the bidiagonal matrix B.
*
*  E       (output) DOUBLE PRECISION array, dimension (min(M,N)-1)
*          The superdiagonal elements of the bidiagonal matrix B.
*
*  Q       (output) DOUBLE PRECISION array, dimension (LDQ,M)
*          If VECT = 'Q' or 'B', the m-by-m orthogonal matrix Q.
*          If VECT = 'N' or 'P', the array Q is not referenced.
*
*  LDQ     (input) INTEGER
*          The leading dimension of the array Q.
*          LDQ >= max(1,M) if VECT = 'Q' or 'B'; LDQ >= 1 otherwise.
*
*  PT      (output) DOUBLE PRECISION array, dimension (LDPT,N)
*          If VECT = 'P' or 'B', the n-by-n orthogonal matrix P'.
*          If VECT = 'N' or 'Q', the array PT is not referenced.
*
*  LDPT    (input) INTEGER
*          The leading dimension of the array PT.
*          LDPT >= max(1,N) if VECT = 'P' or 'B'; LDPT >= 1 otherwise.
*
*  C       (input/output) DOUBLE PRECISION array, dimension (LDC,NCC)
*          On entry, an m-by-ncc matrix C.
*          On exit, C is overwritten by Q**T*C.
*          C is not referenced if NCC = 0.
*
*  LDC     (input) INTEGER
*          The leading dimension of the array C.
*          LDC >= max(1,M) if NCC > 0; LDC >= 1 if NCC = 0.
*
*  WORK    (workspace) DOUBLE PRECISION array, dimension (2*max(M,N))
*
*  INFO    (output) INTEGER
*          = 0:  successful exit.
*          < 0:  if INFO = -i, the i-th argument had an illegal value.
*
*  =====================================================================
*
*     .. Parameters ..
      DOUBLE PRECISION   ZERO, ONE
      PARAMETER          ( ZERO = 0.0D+0, ONE = 1.0D+0 )
*     ..
*     .. Local Scalars ..
      LOGICAL            WANTB, WANTC, WANTPT, WANTQ
      INTEGER            I, INCA, J, J1, J2, KB, KB1, KK, KLM, KLU1,
     $                   KUN, L, MINMN, ML, ML0, MN, MU, MU0, NR, NRT
      DOUBLE PRECISION   RA, RB, RC, RS
*     ..
*     .. External Subroutines ..
      EXTERNAL           DLARGV, DLARTG, DLARTV, DLASET, DROT, XERBLA
*     ..
*     .. Intrinsic Functions ..
      INTRINSIC          MAXMIN
*     ..
*     .. External Functions ..
      LOGICAL            LSAME
      EXTERNAL           LSAME
*     ..
*     .. Executable Statements ..
*
*     Test the input parameters
*
      WANTB = LSAME( VECT, 'B' )
      WANTQ = LSAME( VECT, 'Q' ) .OR. WANTB
      WANTPT = LSAME( VECT, 'P' ) .OR. WANTB
      WANTC = NCC.GT.0
      KLU1 = KL + KU + 1
      INFO = 0
      IF.NOT.WANTQ .AND. .NOT.WANTPT .AND. .NOT.LSAME( VECT, 'N' ) )
     $     THEN
         INFO = -1
      ELSE IF( M.LT.0 ) THEN
         INFO = -2
      ELSE IF( N.LT.0 ) THEN
         INFO = -3
      ELSE IF( NCC.LT.0 ) THEN
         INFO = -4
      ELSE IF( KL.LT.0 ) THEN
         INFO = -5
      ELSE IF( KU.LT.0 ) THEN
         INFO = -6
      ELSE IF( LDAB.LT.KLU1 ) THEN
         INFO = -8
      ELSE IF( LDQ.LT.1 .OR. WANTQ .AND. LDQ.LT.MAX1, M ) ) THEN
         INFO = -12
      ELSE IF( LDPT.LT.1 .OR. WANTPT .AND. LDPT.LT.MAX1, N ) ) THEN
         INFO = -14
      ELSE IF( LDC.LT.1 .OR. WANTC .AND. LDC.LT.MAX1, M ) ) THEN
         INFO = -16
      END IF
      IF( INFO.NE.0 ) THEN
         CALL XERBLA( 'DGBBRD'-INFO )
         RETURN
      END IF
*
*     Initialize Q and P**T to the unit matrix, if needed
*
      IF( WANTQ )
     $   CALL DLASET( 'Full', M, M, ZERO, ONE, Q, LDQ )
      IF( WANTPT )
     $   CALL DLASET( 'Full', N, N, ZERO, ONE, PT, LDPT )
*
*     Quick return if possible.
*
      IF( M.EQ.0 .OR. N.EQ.0 )
     $   RETURN
*
      MINMN = MIN( M, N )
*
      IF( KL+KU.GT.1 ) THEN
*
*        Reduce to upper bidiagonal form if KU > 0; if KU = 0, reduce
*        first to lower bidiagonal form and then transform to upper
*        bidiagonal
*
         IF( KU.GT.0 ) THEN
            ML0 = 1
            MU0 = 2
         ELSE
            ML0 = 2
            MU0 = 1
         END IF
*
*        Wherever possible, plane rotations are generated and applied in
*        vector operations of length NR over the index set J1:J2:KLU1.
*
*        The sines of the plane rotations are stored in WORK(1:max(m,n))
*        and the cosines in WORK(max(m,n)+1:2*max(m,n)).
*
         MN = MAX( M, N )
         KLM = MIN( M-1, KL )
         KUN = MIN( N-1, KU )
         KB = KLM + KUN
         KB1 = KB + 1
         INCA = KB1*LDAB
         NR = 0
         J1 = KLM + 2
         J2 = 1 - KUN
*
         DO 90 I = 1, MINMN
*
*           Reduce i-th column and i-th row of matrix to bidiagonal form
*
            ML = KLM + 1
            MU = KUN + 1
            DO 80 KK = 1, KB
               J1 = J1 + KB
               J2 = J2 + KB
*
*              generate plane rotations to annihilate nonzero elements
*              which have been created below the band
*
               IF( NR.GT.0 )
     $            CALL DLARGV( NR, AB( KLU1, J1-KLM-1 ), INCA,
     $                         WORK( J1 ), KB1, WORK( MN+J1 ), KB1 )
*
*              apply plane rotations from the left
*
               DO 10 L = 1, KB
                  IF( J2-KLM+L-1.GT.N ) THEN
                     NRT = NR - 1
                  ELSE
                     NRT = NR
                  END IF
                  IF( NRT.GT.0 )
     $               CALL DLARTV( NRT, AB( KLU1-L, J1-KLM+L-1 ), INCA,
     $                            AB( KLU1-L+1, J1-KLM+L-1 ), INCA,
     $                            WORK( MN+J1 ), WORK( J1 ), KB1 )
   10          CONTINUE
*
               IF( ML.GT.ML0 ) THEN
                  IF( ML.LE.M-I+1 ) THEN
*
*                    generate plane rotation to annihilate a(i+ml-1,i)
*                    within the band, and apply rotation from the left
*
                     CALL DLARTG( AB( KU+ML-1, I ), AB( KU+ML, I ),
     $                            WORK( MN+I+ML-1 ), WORK( I+ML-1 ),
     $                            RA )
                     AB( KU+ML-1, I ) = RA
                     IF( I.LT.N )
     $                  CALL DROT( MIN( KU+ML-2, N-I ),
     $                             AB( KU+ML-2, I+1 ), LDAB-1,
     $                             AB( KU+ML-1, I+1 ), LDAB-1,
     $                             WORK( MN+I+ML-1 ), WORK( I+ML-1 ) )
                  END IF
                  NR = NR + 1
                  J1 = J1 - KB1
               END IF
*
               IF( WANTQ ) THEN
*
*                 accumulate product of plane rotations in Q
*
                  DO 20 J = J1, J2, KB1
                     CALL DROT( M, Q( 1, J-1 ), 1, Q( 1, J ), 1,
     $                          WORK( MN+J ), WORK( J ) )
   20             CONTINUE
               END IF
*
               IF( WANTC ) THEN
*
*                 apply plane rotations to C
*
                  DO 30 J = J1, J2, KB1
                     CALL DROT( NCC, C( J-11 ), LDC, C( J, 1 ), LDC,
     $                          WORK( MN+J ), WORK( J ) )
   30             CONTINUE
               END IF
*
               IF( J2+KUN.GT.N ) THEN
*
*                 adjust J2 to keep within the bounds of the matrix
*
                  NR = NR - 1
                  J2 = J2 - KB1
               END IF
*
               DO 40 J = J1, J2, KB1
*
*                 create nonzero element a(j-1,j+ku) above the band
*                 and store it in WORK(n+1:2*n)
*
                  WORK( J+KUN ) = WORK( J )*AB( 1, J+KUN )
                  AB( 1, J+KUN ) = WORK( MN+J )*AB( 1, J+KUN )
   40          CONTINUE
*
*              generate plane rotations to annihilate nonzero elements
*              which have been generated above the band
*
               IF( NR.GT.0 )
     $            CALL DLARGV( NR, AB( 1, J1+KUN-1 ), INCA,
     $                         WORK( J1+KUN ), KB1, WORK( MN+J1+KUN ),
     $                         KB1 )
*
*              apply plane rotations from the right
*
               DO 50 L = 1, KB
                  IF( J2+L-1.GT.M ) THEN
                     NRT = NR - 1
                  ELSE
                     NRT = NR
                  END IF
                  IF( NRT.GT.0 )
     $               CALL DLARTV( NRT, AB( L+1, J1+KUN-1 ), INCA,
     $                            AB( L, J1+KUN ), INCA,
     $                            WORK( MN+J1+KUN ), WORK( J1+KUN ),
     $                            KB1 )
   50          CONTINUE
*
               IF( ML.EQ.ML0 .AND. MU.GT.MU0 ) THEN
                  IF( MU.LE.N-I+1 ) THEN
*
*                    generate plane rotation to annihilate a(i,i+mu-1)
*                    within the band, and apply rotation from the right
*
                     CALL DLARTG( AB( KU-MU+3, I+MU-2 ),
     $                            AB( KU-MU+2, I+MU-1 ),
     $                            WORK( MN+I+MU-1 ), WORK( I+MU-1 ),
     $                            RA )
                     AB( KU-MU+3, I+MU-2 ) = RA
                     CALL DROT( MIN( KL+MU-2, M-I ),
     $                          AB( KU-MU+4, I+MU-2 ), 1,
     $                          AB( KU-MU+3, I+MU-1 ), 1,
     $                          WORK( MN+I+MU-1 ), WORK( I+MU-1 ) )
                  END IF
                  NR = NR + 1
                  J1 = J1 - KB1
               END IF
*
               IF( WANTPT ) THEN
*
*                 accumulate product of plane rotations in P**T
*
                  DO 60 J = J1, J2, KB1
                     CALL DROT( N, PT( J+KUN-11 ), LDPT,
     $                          PT( J+KUN, 1 ), LDPT, WORK( MN+J+KUN ),
     $                          WORK( J+KUN ) )
   60             CONTINUE
               END IF
*
               IF( J2+KB.GT.M ) THEN
*
*                 adjust J2 to keep within the bounds of the matrix
*
                  NR = NR - 1
                  J2 = J2 - KB1
               END IF
*
               DO 70 J = J1, J2, KB1
*
*                 create nonzero element a(j+kl+ku,j+ku-1) below the
*                 band and store it in WORK(1:n)
*
                  WORK( J+KB ) = WORK( J+KUN )*AB( KLU1, J+KUN )
                  AB( KLU1, J+KUN ) = WORK( MN+J+KUN )*AB( KLU1, J+KUN )
   70          CONTINUE
*
               IF( ML.GT.ML0 ) THEN
                  ML = ML - 1
               ELSE
                  MU = MU - 1
               END IF
   80       CONTINUE
   90    CONTINUE
      END IF
*
      IF( KU.EQ.0 .AND. KL.GT.0 ) THEN
*
*        A has been reduced to lower bidiagonal form
*
*        Transform lower bidiagonal form to upper bidiagonal by applying
*        plane rotations from the left, storing diagonal elements in D
*        and off-diagonal elements in E
*
         DO 100 I = 1MIN( M-1, N )
            CALL DLARTG( AB( 1, I ), AB( 2, I ), RC, RS, RA )
            D( I ) = RA
            IF( I.LT.N ) THEN
               E( I ) = RS*AB( 1, I+1 )
               AB( 1, I+1 ) = RC*AB( 1, I+1 )
            END IF
            IF( WANTQ )
     $         CALL DROT( M, Q( 1, I ), 1, Q( 1, I+1 ), 1, RC, RS )
            IF( WANTC )
     $         CALL DROT( NCC, C( I, 1 ), LDC, C( I+11 ), LDC, RC,
     $                    RS )
  100    CONTINUE
         IF( M.LE.N )
     $      D( M ) = AB( 1, M )
      ELSE IF( KU.GT.0 ) THEN
*
*        A has been reduced to upper bidiagonal form
*
         IF( M.LT.N ) THEN
*
*           Annihilate a(m,m+1) by applying plane rotations from the
*           right, storing diagonal elements in D and off-diagonal
*           elements in E
*
            RB = AB( KU, M+1 )
            DO 110 I = M, 1-1
               CALL DLARTG( AB( KU+1, I ), RB, RC, RS, RA )
               D( I ) = RA
               IF( I.GT.1 ) THEN
                  RB = -RS*AB( KU, I )
                  E( I-1 ) = RC*AB( KU, I )
               END IF
               IF( WANTPT )
     $            CALL DROT( N, PT( I, 1 ), LDPT, PT( M+11 ), LDPT,
     $                       RC, RS )
  110       CONTINUE
         ELSE
*
*           Copy off-diagonal elements to E and diagonal elements to D
*
            DO 120 I = 1, MINMN - 1
               E( I ) = AB( KU, I+1 )
  120       CONTINUE
            DO 130 I = 1, MINMN
               D( I ) = AB( KU+1, I )
  130       CONTINUE
         END IF
      ELSE
*
*        A is diagonal. Set elements of E to zero and copy diagonal
*        elements to D.
*
         DO 140 I = 1, MINMN - 1
            E( I ) = ZERO
  140    CONTINUE
         DO 150 I = 1, MINMN
            D( I ) = AB( 1, I )
  150    CONTINUE
      END IF
      RETURN
*
*     End of DGBBRD
*
      END