1
       2
       3
       4
       5
       6
       7
       8
       9
      10
      11
      12
      13
      14
      15
      16
      17
      18
      19
      20
      21
      22
      23
      24
      25
      26
      27
      28
      29
      30
      31
      32
      33
      34
      35
      36
      37
      38
      39
      40
      41
      42
      43
      44
      45
      46
      47
      48
      49
      50
      51
      52
      53
      54
      55
      56
      57
      58
      59
      60
      61
      62
      63
      64
      65
      66
      67
      68
      69
      70
      71
      72
      73
      74
      75
      76
      77
      78
      79
      80
      81
      82
      83
      84
      85
      86
      87
      88
      89
      90
      91
      92
      93
      94
      95
      96
      97
      98
      99
     100
     101
     102
     103
     104
     105
     106
     107
     108
     109
     110
     111
     112
     113
     114
     115
     116
     117
     118
     119
     120
     121
     122
     123
     124
     125
     126
     127
     128
     129
     130
     131
     132
     133
     134
     135
     136
     137
     138
     139
     140
     141
     142
     143
     144
     145
     146
     147
     148
     149
     150
     151
     152
     153
     154
     155
     156
     157
     158
     159
     160
     161
     162
     163
     164
     165
     166
     167
     168
     169
     170
     171
     172
     173
     174
     175
     176
     177
     178
     179
     180
     181
     182
     183
     184
     185
     186
     187
     188
     189
     190
     191
     192
     193
     194
     195
     196
     197
     198
     199
     200
     201
     202
     203
      SUBROUTINE DGBTF2( M, N, KL, KU, AB, LDAB, IPIV, INFO )
*
*  -- LAPACK routine (version 3.2) --
*  -- LAPACK is a software package provided by Univ. of Tennessee,    --
*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
*     November 2006
*
*     .. Scalar Arguments ..
      INTEGER            INFO, KL, KU, LDAB, M, N
*     ..
*     .. Array Arguments ..
      INTEGER            IPIV( * )
      DOUBLE PRECISION   AB( LDAB, * )
*     ..
*
*  Purpose
*  =======
*
*  DGBTF2 computes an LU factorization of a real m-by-n band matrix A
*  using partial pivoting with row interchanges.
*
*  This is the unblocked version of the algorithm, calling Level 2 BLAS.
*
*  Arguments
*  =========
*
*  M       (input) INTEGER
*          The number of rows of the matrix A.  M >= 0.
*
*  N       (input) INTEGER
*          The number of columns of the matrix A.  N >= 0.
*
*  KL      (input) INTEGER
*          The number of subdiagonals within the band of A.  KL >= 0.
*
*  KU      (input) INTEGER
*          The number of superdiagonals within the band of A.  KU >= 0.
*
*  AB      (input/output) DOUBLE PRECISION array, dimension (LDAB,N)
*          On entry, the matrix A in band storage, in rows KL+1 to
*          2*KL+KU+1; rows 1 to KL of the array need not be set.
*          The j-th column of A is stored in the j-th column of the
*          array AB as follows:
*          AB(kl+ku+1+i-j,j) = A(i,j) for max(1,j-ku)<=i<=min(m,j+kl)
*
*          On exit, details of the factorization: U is stored as an
*          upper triangular band matrix with KL+KU superdiagonals in
*          rows 1 to KL+KU+1, and the multipliers used during the
*          factorization are stored in rows KL+KU+2 to 2*KL+KU+1.
*          See below for further details.
*
*  LDAB    (input) INTEGER
*          The leading dimension of the array AB.  LDAB >= 2*KL+KU+1.
*
*  IPIV    (output) INTEGER array, dimension (min(M,N))
*          The pivot indices; for 1 <= i <= min(M,N), row i of the
*          matrix was interchanged with row IPIV(i).
*
*  INFO    (output) INTEGER
*          = 0: successful exit
*          < 0: if INFO = -i, the i-th argument had an illegal value
*          > 0: if INFO = +i, U(i,i) is exactly zero. The factorization
*               has been completed, but the factor U is exactly
*               singular, and division by zero will occur if it is used
*               to solve a system of equations.
*
*  Further Details
*  ===============
*
*  The band storage scheme is illustrated by the following example, when
*  M = N = 6, KL = 2, KU = 1:
*
*  On entry:                       On exit:
*
*      *    *    *    +    +    +       *    *    *   u14  u25  u36
*      *    *    +    +    +    +       *    *   u13  u24  u35  u46
*      *   a12  a23  a34  a45  a56      *   u12  u23  u34  u45  u56
*     a11  a22  a33  a44  a55  a66     u11  u22  u33  u44  u55  u66
*     a21  a32  a43  a54  a65   *      m21  m32  m43  m54  m65   *
*     a31  a42  a53  a64   *    *      m31  m42  m53  m64   *    *
*
*  Array elements marked * are not used by the routine; elements marked
*  + need not be set on entry, but are required by the routine to store
*  elements of U, because of fill-in resulting from the row
*  interchanges.
*
*  =====================================================================
*
*     .. Parameters ..
      DOUBLE PRECISION   ONE, ZERO
      PARAMETER          ( ONE = 1.0D+0, ZERO = 0.0D+0 )
*     ..
*     .. Local Scalars ..
      INTEGER            I, J, JP, JU, KM, KV
*     ..
*     .. External Functions ..
      INTEGER            IDAMAX
      EXTERNAL           IDAMAX
*     ..
*     .. External Subroutines ..
      EXTERNAL           DGER, DSCAL, DSWAP, XERBLA
*     ..
*     .. Intrinsic Functions ..
      INTRINSIC          MAXMIN
*     ..
*     .. Executable Statements ..
*
*     KV is the number of superdiagonals in the factor U, allowing for
*     fill-in.
*
      KV = KU + KL
*
*     Test the input parameters.
*
      INFO = 0
      IF( M.LT.0 ) THEN
         INFO = -1
      ELSE IF( N.LT.0 ) THEN
         INFO = -2
      ELSE IF( KL.LT.0 ) THEN
         INFO = -3
      ELSE IF( KU.LT.0 ) THEN
         INFO = -4
      ELSE IF( LDAB.LT.KL+KV+1 ) THEN
         INFO = -6
      END IF
      IF( INFO.NE.0 ) THEN
         CALL XERBLA( 'DGBTF2'-INFO )
         RETURN
      END IF
*
*     Quick return if possible
*
      IF( M.EQ.0 .OR. N.EQ.0 )
     $   RETURN
*
*     Gaussian elimination with partial pivoting
*
*     Set fill-in elements in columns KU+2 to KV to zero.
*
      DO 20 J = KU + 2MIN( KV, N )
         DO 10 I = KV - J + 2, KL
            AB( I, J ) = ZERO
   10    CONTINUE
   20 CONTINUE
*
*     JU is the index of the last column affected by the current stage
*     of the factorization.
*
      JU = 1
*
      DO 40 J = 1MIN( M, N )
*
*        Set fill-in elements in column J+KV to zero.
*
         IF( J+KV.LE.N ) THEN
            DO 30 I = 1, KL
               AB( I, J+KV ) = ZERO
   30       CONTINUE
         END IF
*
*        Find pivot and test for singularity. KM is the number of
*        subdiagonal elements in the current column.
*
         KM = MIN( KL, M-J )
         JP = IDAMAX( KM+1, AB( KV+1, J ), 1 )
         IPIV( J ) = JP + J - 1
         IF( AB( KV+JP, J ).NE.ZERO ) THEN
            JU = MAX( JU, MIN( J+KU+JP-1, N ) )
*
*           Apply interchange to columns J to JU.
*
            IF( JP.NE.1 )
     $         CALL DSWAP( JU-J+1, AB( KV+JP, J ), LDAB-1,
     $                     AB( KV+1, J ), LDAB-1 )
*
            IF( KM.GT.0 ) THEN
*
*              Compute multipliers.
*
               CALL DSCAL( KM, ONE / AB( KV+1, J ), AB( KV+2, J ), 1 )
*
*              Update trailing submatrix within the band.
*
               IF( JU.GT.J )
     $            CALL DGER( KM, JU-J, -ONE, AB( KV+2, J ), 1,
     $                       AB( KV, J+1 ), LDAB-1, AB( KV+1, J+1 ),
     $                       LDAB-1 )
            END IF
         ELSE
*
*           If pivot is zero, set INFO to the index of the pivot
*           unless a zero pivot has already been found.
*
            IF( INFO.EQ.0 )
     $         INFO = J
         END IF
   40 CONTINUE
      RETURN
*
*     End of DGBTF2
*
      END