1 
  2 
  3 
  4 
  5 
  6 
  7 
  8 
  9 
 10 
 11 
 12 
 13 
 14 
 15 
 16 
 17 
 18 
 19 
 20 
 21 
 22 
 23 
 24 
 25 
 26 
 27 
 28 
 29 
 30 
 31 
 32 
 33 
 34 
 35 
 36 
 37 
 38 
 39 
 40 
 41 
 42 
 43 
 44 
 45 
 46 
 47 
 48 
 49 
 50 
 51 
 52 
 53 
 54 
 55 
 56 
 57 
 58 
 59 
 60 
 61 
 62 
 63 
 64 
 65 
 66 
 67 
 68 
 69 
 70 
 71 
 72 
 73 
 74 
 75 
 76 
 77 
 78 
 79 
 80 
 81 
 82 
 83 
 84 
 85 
 86 
 87 
 88 
 89 
 90 
 91 
 92 
 93 
 94 
 95 
 96 
 97 
 98 
 99 
100 
101 
102 
103 
104 
105 
106 
107 
108 
109 
110 
111 
112 
113 
114 
115 
116 
117 
118 
119 
120 
121 
122 
123 
124 
125 
126 
127 
128 
129 
130 
131 
132 
133 
134 
135 
136 
137 
138 
139 
140 
141 
142 
143 
144 
145 
146 
147 
148 
149 
150 
151 
152 
153 
154 
155 
156 
157 
158 
159 
160 
161 
162 
163 
164 
165 
166 
167 
168 
169 
170 
171 
172 
173 
174 
175 
176 
177 
178 
179 
180 
181 
182 
183 
184 
185 
186 
187 
188 
189 
190 
191 
192 
193 
194 
195 
196 
197 
198 
199 
200 
201 
202 
203 
204 
205 
206 
207 
208 
209 
210 
211 
212 
213 
214 
215 
216 
217 
218 
219 
220 
221 
222 
223 
224 
225 
226 
227 
228 
229 
230 
231 
232 
233 
234 
235 
236 
237 
238 
239 
240 
241 
242 
243 
244 
245 
246 
247 
248 
249 
250 
251 
252 
253 
254 
255 
256 
257 
258 
259 
260 
261 
262 
263 
264 
265 
266 
267 
268 
269 
270 
271 
272 
273 
274 
275 
276 
277 
278 
279 
280 
281 
282 
283 
284 
285 
286 
287 
288 
289 
290 
291 
292 
293 
294 
295 
296 
297 
298 
299 
300 
301 
302 
303 
304 
305 
306 
307 
308 
309 
310 
311 
312 
313 
314 
315 
316 
317 
318 
319 
320 
321 
322 
323 
324 
325 
326 
327 
328 
329 
330 
331 
332 
333 
334 
335 
336 
337 
338 
339 
340 
341 
342 
343 
344 
345 
346 
347 
348 
349 
350 
351 
352 
353 
354 
355 
356 
357 
358 
359 
360 
361 
362 
363 
364 
365 
366 
367 
368 
369 
370 
371 
372 
373 
374 
375 
376 
377 
378 
379 
380 
381 
382 
383 
384 
385 
386 
387 
388 
389 
390 
391 
392 
393 
394 
395 
396 
397 
398 
399 
400 
401 
402 
403 
404 
405 
406 
407 
408 
409 
410 
411 
412 
413 
414 
415 
416 
417 
418 
419 
420 
421 
422 
423 
424 
425 
426 
427 
428 
429 
430 
431 
432 
433 
434 
435 
436 
437 
438 
439 
440 
441 
442 
443 
444 
445 
446 
447 
448 
449 
450 
451 
452 
453 
454 
455 
456 
457 
458 
459 
460 
461 
462 
463 
464 
465 
466 
467 
468 
469 
470 
471 
472 
473 
474 
475 
476 
477 
478 
479 
480 
481 
482 
483 
484 
485 
486 
487 
488 
489 
490 
491 
492 
493 
494 
495 
496 
497 
498 
499 
500 
501 
502 
503 
504 
505 
506 
507 
508 
509 
510 
511 
512 
513 
514 
515 
516 
517 
518 
519 
520 
521 
522 
523 
524 
525 
526 
527 
528 
529 
530 
531 
 
 | 
 
      SUBROUTINE DGEESX( JOBVS, SORT, SELECT, SENSE, N, A, LDA, SDIM, 
     $                   WR, WI, VS, LDVS, RCONDE, RCONDV, WORK, LWORK, 
     $                   IWORK, LIWORK, BWORK, INFO ) 
* 
*  -- LAPACK driver routine (version 3.2.2) -- 
*  -- LAPACK is a software package provided by Univ. of Tennessee,    -- 
*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- 
*     June 2010 
* 
*     .. Scalar Arguments .. 
      CHARACTER          JOBVS, SENSE, SORT 
      INTEGER            INFO, LDA, LDVS, LIWORK, LWORK, N, SDIM 
      DOUBLE PRECISION   RCONDE, RCONDV 
*     .. 
*     .. Array Arguments .. 
      LOGICAL            BWORK( * ) 
      INTEGER            IWORK( * ) 
      DOUBLE PRECISION   A( LDA, * ), VS( LDVS, * ), WI( * ), WORK( * ), 
     $                   WR( * ) 
*     .. 
*     .. Function Arguments .. 
      LOGICAL            SELECT 
      EXTERNAL           SELECT 
*     .. 
* 
*  Purpose 
*  ======= 
* 
*  DGEESX computes for an N-by-N real nonsymmetric matrix A, the 
*  eigenvalues, the real Schur form T, and, optionally, the matrix of 
*  Schur vectors Z.  This gives the Schur factorization A = Z*T*(Z**T). 
* 
*  Optionally, it also orders the eigenvalues on the diagonal of the 
*  real Schur form so that selected eigenvalues are at the top left; 
*  computes a reciprocal condition number for the average of the 
*  selected eigenvalues (RCONDE); and computes a reciprocal condition 
*  number for the right invariant subspace corresponding to the 
*  selected eigenvalues (RCONDV).  The leading columns of Z form an 
*  orthonormal basis for this invariant subspace. 
* 
*  For further explanation of the reciprocal condition numbers RCONDE 
*  and RCONDV, see Section 4.10 of the LAPACK Users' Guide (where 
*  these quantities are called s and sep respectively). 
* 
*  A real matrix is in real Schur form if it is upper quasi-triangular 
*  with 1-by-1 and 2-by-2 blocks. 2-by-2 blocks will be standardized in 
*  the form 
*            [  a  b  ] 
*            [  c  a  ] 
* 
*  where b*c < 0. The eigenvalues of such a block are a +- sqrt(bc). 
* 
*  Arguments 
*  ========= 
* 
*  JOBVS   (input) CHARACTER*1 
*          = 'N': Schur vectors are not computed; 
*          = 'V': Schur vectors are computed. 
* 
*  SORT    (input) CHARACTER*1 
*          Specifies whether or not to order the eigenvalues on the 
*          diagonal of the Schur form. 
*          = 'N': Eigenvalues are not ordered; 
*          = 'S': Eigenvalues are ordered (see SELECT). 
* 
*  SELECT  (external procedure) LOGICAL FUNCTION of two DOUBLE PRECISION arguments 
*          SELECT must be declared EXTERNAL in the calling subroutine. 
*          If SORT = 'S', SELECT is used to select eigenvalues to sort 
*          to the top left of the Schur form. 
*          If SORT = 'N', SELECT is not referenced. 
*          An eigenvalue WR(j)+sqrt(-1)*WI(j) is selected if 
*          SELECT(WR(j),WI(j)) is true; i.e., if either one of a 
*          complex conjugate pair of eigenvalues is selected, then both 
*          are.  Note that a selected complex eigenvalue may no longer 
*          satisfy SELECT(WR(j),WI(j)) = .TRUE. after ordering, since 
*          ordering may change the value of complex eigenvalues 
*          (especially if the eigenvalue is ill-conditioned); in this 
*          case INFO may be set to N+3 (see INFO below). 
* 
*  SENSE   (input) CHARACTER*1 
*          Determines which reciprocal condition numbers are computed. 
*          = 'N': None are computed; 
*          = 'E': Computed for average of selected eigenvalues only; 
*          = 'V': Computed for selected right invariant subspace only; 
*          = 'B': Computed for both. 
*          If SENSE = 'E', 'V' or 'B', SORT must equal 'S'. 
* 
*  N       (input) INTEGER 
*          The order of the matrix A. N >= 0. 
* 
*  A       (input/output) DOUBLE PRECISION array, dimension (LDA, N) 
*          On entry, the N-by-N matrix A. 
*          On exit, A is overwritten by its real Schur form T. 
* 
*  LDA     (input) INTEGER 
*          The leading dimension of the array A.  LDA >= max(1,N). 
* 
*  SDIM    (output) INTEGER 
*          If SORT = 'N', SDIM = 0. 
*          If SORT = 'S', SDIM = number of eigenvalues (after sorting) 
*                         for which SELECT is true. (Complex conjugate 
*                         pairs for which SELECT is true for either 
*                         eigenvalue count as 2.) 
* 
*  WR      (output) DOUBLE PRECISION array, dimension (N) 
*  WI      (output) DOUBLE PRECISION array, dimension (N) 
*          WR and WI contain the real and imaginary parts, respectively, 
*          of the computed eigenvalues, in the same order that they 
*          appear on the diagonal of the output Schur form T.  Complex 
*          conjugate pairs of eigenvalues appear consecutively with the 
*          eigenvalue having the positive imaginary part first. 
* 
*  VS      (output) DOUBLE PRECISION array, dimension (LDVS,N) 
*          If JOBVS = 'V', VS contains the orthogonal matrix Z of Schur 
*          vectors. 
*          If JOBVS = 'N', VS is not referenced. 
* 
*  LDVS    (input) INTEGER 
*          The leading dimension of the array VS.  LDVS >= 1, and if 
*          JOBVS = 'V', LDVS >= N. 
* 
*  RCONDE  (output) DOUBLE PRECISION 
*          If SENSE = 'E' or 'B', RCONDE contains the reciprocal 
*          condition number for the average of the selected eigenvalues. 
*          Not referenced if SENSE = 'N' or 'V'. 
* 
*  RCONDV  (output) DOUBLE PRECISION 
*          If SENSE = 'V' or 'B', RCONDV contains the reciprocal 
*          condition number for the selected right invariant subspace. 
*          Not referenced if SENSE = 'N' or 'E'. 
* 
*  WORK    (workspace/output) DOUBLE PRECISION array, dimension (MAX(1,LWORK)) 
*          On exit, if INFO = 0, WORK(1) returns the optimal LWORK. 
* 
*  LWORK   (input) INTEGER 
*          The dimension of the array WORK.  LWORK >= max(1,3*N). 
*          Also, if SENSE = 'E' or 'V' or 'B', 
*          LWORK >= N+2*SDIM*(N-SDIM), where SDIM is the number of 
*          selected eigenvalues computed by this routine.  Note that 
*          N+2*SDIM*(N-SDIM) <= N+N*N/2. Note also that an error is only 
*          returned if LWORK < max(1,3*N), but if SENSE = 'E' or 'V' or 
*          'B' this may not be large enough. 
*          For good performance, LWORK must generally be larger. 
* 
*          If LWORK = -1, then a workspace query is assumed; the routine 
*          only calculates upper bounds on the optimal sizes of the 
*          arrays WORK and IWORK, returns these values as the first 
*          entries of the WORK and IWORK arrays, and no error messages 
*          related to LWORK or LIWORK are issued by XERBLA. 
* 
*  IWORK   (workspace/output) INTEGER array, dimension (MAX(1,LIWORK)) 
*          On exit, if INFO = 0, IWORK(1) returns the optimal LIWORK. 
* 
*  LIWORK  (input) INTEGER 
*          The dimension of the array IWORK. 
*          LIWORK >= 1; if SENSE = 'V' or 'B', LIWORK >= SDIM*(N-SDIM). 
*          Note that SDIM*(N-SDIM) <= N*N/4. Note also that an error is 
*          only returned if LIWORK < 1, but if SENSE = 'V' or 'B' this 
*          may not be large enough. 
* 
*          If LIWORK = -1, then a workspace query is assumed; the 
*          routine only calculates upper bounds on the optimal sizes of 
*          the arrays WORK and IWORK, returns these values as the first 
*          entries of the WORK and IWORK arrays, and no error messages 
*          related to LWORK or LIWORK are issued by XERBLA. 
* 
*  BWORK   (workspace) LOGICAL array, dimension (N) 
*          Not referenced if SORT = 'N'. 
* 
*  INFO    (output) INTEGER 
*          = 0: successful exit 
*          < 0: if INFO = -i, the i-th argument had an illegal value. 
*          > 0: if INFO = i, and i is 
*             <= N: the QR algorithm failed to compute all the 
*                   eigenvalues; elements 1:ILO-1 and i+1:N of WR and WI 
*                   contain those eigenvalues which have converged; if 
*                   JOBVS = 'V', VS contains the transformation which 
*                   reduces A to its partially converged Schur form. 
*             = N+1: the eigenvalues could not be reordered because some 
*                   eigenvalues were too close to separate (the problem 
*                   is very ill-conditioned); 
*             = N+2: after reordering, roundoff changed values of some 
*                   complex eigenvalues so that leading eigenvalues in 
*                   the Schur form no longer satisfy SELECT=.TRUE.  This 
*                   could also be caused by underflow due to scaling. 
* 
*  ===================================================================== 
* 
*     .. Parameters .. 
      DOUBLE PRECISION   ZERO, ONE 
      PARAMETER          ( ZERO = 0.0D0, ONE = 1.0D0 ) 
*     .. 
*     .. Local Scalars .. 
      LOGICAL            CURSL, LASTSL, LQUERY, LST2SL, SCALEA, WANTSB, 
     $                   WANTSE, WANTSN, WANTST, WANTSV, WANTVS 
      INTEGER            HSWORK, I, I1, I2, IBAL, ICOND, IERR, IEVAL, 
     $                   IHI, ILO, INXT, IP, ITAU, IWRK, LIWRK, LWRK, 
     $                   MAXWRK, MINWRK 
      DOUBLE PRECISION   ANRM, BIGNUM, CSCALE, EPS, SMLNUM 
*     .. 
*     .. Local Arrays .. 
      DOUBLE PRECISION   DUM( 1 ) 
*     .. 
*     .. External Subroutines .. 
      EXTERNAL           DCOPY, DGEBAK, DGEBAL, DGEHRD, DHSEQR, DLACPY, 
     $                   DLASCL, DORGHR, DSWAP, DTRSEN, XERBLA 
*     .. 
*     .. External Functions .. 
      LOGICAL            LSAME 
      INTEGER            ILAENV 
      DOUBLE PRECISION   DLAMCH, DLANGE 
      EXTERNAL           LSAME, ILAENV, DLABAD, DLAMCH, DLANGE 
*     .. 
*     .. Intrinsic Functions .. 
      INTRINSIC          MAX, SQRT 
*     .. 
*     .. Executable Statements .. 
* 
*     Test the input arguments 
* 
      INFO = 0 
      WANTVS = LSAME( JOBVS, 'V' ) 
      WANTST = LSAME( SORT, 'S' ) 
      WANTSN = LSAME( SENSE, 'N' ) 
      WANTSE = LSAME( SENSE, 'E' ) 
      WANTSV = LSAME( SENSE, 'V' ) 
      WANTSB = LSAME( SENSE, 'B' ) 
      LQUERY = ( LWORK.EQ.-1 .OR. LIWORK.EQ.-1 ) 
* 
      IF( ( .NOT.WANTVS ) .AND. ( .NOT.LSAME( JOBVS, 'N' ) ) ) THEN 
         INFO = -1 
      ELSE IF( ( .NOT.WANTST ) .AND. ( .NOT.LSAME( SORT, 'N' ) ) ) THEN 
         INFO = -2 
      ELSE IF( .NOT.( WANTSN .OR. WANTSE .OR. WANTSV .OR. WANTSB ) .OR. 
     $         ( .NOT.WANTST .AND. .NOT.WANTSN ) ) THEN 
         INFO = -4 
      ELSE IF( N.LT.0 ) THEN 
         INFO = -5 
      ELSE IF( LDA.LT.MAX( 1, N ) ) THEN 
         INFO = -7 
      ELSE IF( LDVS.LT.1 .OR. ( WANTVS .AND. LDVS.LT.N ) ) THEN 
         INFO = -12 
      END IF 
* 
*     Compute workspace 
*      (Note: Comments in the code beginning "RWorkspace:" describe the 
*       minimal amount of real workspace needed at that point in the 
*       code, as well as the preferred amount for good performance. 
*       IWorkspace refers to integer workspace. 
*       NB refers to the optimal block size for the immediately 
*       following subroutine, as returned by ILAENV. 
*       HSWORK refers to the workspace preferred by DHSEQR, as 
*       calculated below. HSWORK is computed assuming ILO=1 and IHI=N, 
*       the worst case. 
*       If SENSE = 'E', 'V' or 'B', then the amount of workspace needed 
*       depends on SDIM, which is computed by the routine DTRSEN later 
*       in the code.) 
* 
      IF( INFO.EQ.0 ) THEN 
         LIWRK = 1 
         IF( N.EQ.0 ) THEN 
            MINWRK = 1 
            LWRK = 1 
         ELSE 
            MAXWRK = 2*N + N*ILAENV( 1, 'DGEHRD', ' ', N, 1, N, 0 ) 
            MINWRK = 3*N 
* 
            CALL DHSEQR( 'S', JOBVS, N, 1, N, A, LDA, WR, WI, VS, LDVS, 
     $             WORK, -1, IEVAL ) 
            HSWORK = WORK( 1 ) 
* 
            IF( .NOT.WANTVS ) THEN 
               MAXWRK = MAX( MAXWRK, N + HSWORK ) 
            ELSE 
               MAXWRK = MAX( MAXWRK, 2*N + ( N - 1 )*ILAENV( 1, 
     $                       'DORGHR', ' ', N, 1, N, -1 ) ) 
               MAXWRK = MAX( MAXWRK, N + HSWORK ) 
            END IF 
            LWRK = MAXWRK 
            IF( .NOT.WANTSN ) 
     $         LWRK = MAX( LWRK, N + ( N*N )/2 ) 
            IF( WANTSV .OR. WANTSB ) 
     $         LIWRK = ( N*N )/4 
         END IF 
         IWORK( 1 ) = LIWRK 
         WORK( 1 ) = LWRK 
* 
         IF( LWORK.LT.MINWRK .AND. .NOT.LQUERY ) THEN 
            INFO = -16 
         ELSE IF( LIWORK.LT.1 .AND. .NOT.LQUERY ) THEN 
            INFO = -18 
         END IF 
      END IF 
* 
      IF( INFO.NE.0 ) THEN 
         CALL XERBLA( 'DGEESX', -INFO ) 
         RETURN 
      ELSE IF( LQUERY ) THEN 
         RETURN 
      END IF 
* 
*     Quick return if possible 
* 
      IF( N.EQ.0 ) THEN 
         SDIM = 0 
         RETURN 
      END IF 
* 
*     Get machine constants 
* 
      EPS = DLAMCH( 'P' ) 
      SMLNUM = DLAMCH( 'S' ) 
      BIGNUM = ONE / SMLNUM 
      CALL DLABAD( SMLNUM, BIGNUM ) 
      SMLNUM = SQRT( SMLNUM ) / EPS 
      BIGNUM = ONE / SMLNUM 
* 
*     Scale A if max element outside range [SMLNUM,BIGNUM] 
* 
      ANRM = DLANGE( 'M', N, N, A, LDA, DUM ) 
      SCALEA = .FALSE. 
      IF( ANRM.GT.ZERO .AND. ANRM.LT.SMLNUM ) THEN 
         SCALEA = .TRUE. 
         CSCALE = SMLNUM 
      ELSE IF( ANRM.GT.BIGNUM ) THEN 
         SCALEA = .TRUE. 
         CSCALE = BIGNUM 
      END IF 
      IF( SCALEA ) 
     $   CALL DLASCL( 'G', 0, 0, ANRM, CSCALE, N, N, A, LDA, IERR ) 
* 
*     Permute the matrix to make it more nearly triangular 
*     (RWorkspace: need N) 
* 
      IBAL = 1 
      CALL DGEBAL( 'P', N, A, LDA, ILO, IHI, WORK( IBAL ), IERR ) 
* 
*     Reduce to upper Hessenberg form 
*     (RWorkspace: need 3*N, prefer 2*N+N*NB) 
* 
      ITAU = N + IBAL 
      IWRK = N + ITAU 
      CALL DGEHRD( N, ILO, IHI, A, LDA, WORK( ITAU ), WORK( IWRK ), 
     $             LWORK-IWRK+1, IERR ) 
* 
      IF( WANTVS ) THEN 
* 
*        Copy Householder vectors to VS 
* 
         CALL DLACPY( 'L', N, N, A, LDA, VS, LDVS ) 
* 
*        Generate orthogonal matrix in VS 
*        (RWorkspace: need 3*N-1, prefer 2*N+(N-1)*NB) 
* 
         CALL DORGHR( N, ILO, IHI, VS, LDVS, WORK( ITAU ), WORK( IWRK ), 
     $                LWORK-IWRK+1, IERR ) 
      END IF 
* 
      SDIM = 0 
* 
*     Perform QR iteration, accumulating Schur vectors in VS if desired 
*     (RWorkspace: need N+1, prefer N+HSWORK (see comments) ) 
* 
      IWRK = ITAU 
      CALL DHSEQR( 'S', JOBVS, N, ILO, IHI, A, LDA, WR, WI, VS, LDVS, 
     $             WORK( IWRK ), LWORK-IWRK+1, IEVAL ) 
      IF( IEVAL.GT.0 ) 
     $   INFO = IEVAL 
* 
*     Sort eigenvalues if desired 
* 
      IF( WANTST .AND. INFO.EQ.0 ) THEN 
         IF( SCALEA ) THEN 
            CALL DLASCL( 'G', 0, 0, CSCALE, ANRM, N, 1, WR, N, IERR ) 
            CALL DLASCL( 'G', 0, 0, CSCALE, ANRM, N, 1, WI, N, IERR ) 
         END IF 
         DO 10 I = 1, N 
            BWORK( I ) = SELECT( WR( I ), WI( I ) ) 
   10    CONTINUE 
* 
*        Reorder eigenvalues, transform Schur vectors, and compute 
*        reciprocal condition numbers 
*        (RWorkspace: if SENSE is not 'N', need N+2*SDIM*(N-SDIM) 
*                     otherwise, need N ) 
*        (IWorkspace: if SENSE is 'V' or 'B', need SDIM*(N-SDIM) 
*                     otherwise, need 0 ) 
* 
         CALL DTRSEN( SENSE, JOBVS, BWORK, N, A, LDA, VS, LDVS, WR, WI, 
     $                SDIM, RCONDE, RCONDV, WORK( IWRK ), LWORK-IWRK+1, 
     $                IWORK, LIWORK, ICOND ) 
         IF( .NOT.WANTSN ) 
     $      MAXWRK = MAX( MAXWRK, N+2*SDIM*( N-SDIM ) ) 
         IF( ICOND.EQ.-15 ) THEN 
* 
*           Not enough real workspace 
* 
            INFO = -16 
         ELSE IF( ICOND.EQ.-17 ) THEN 
* 
*           Not enough integer workspace 
* 
            INFO = -18 
         ELSE IF( ICOND.GT.0 ) THEN 
* 
*           DTRSEN failed to reorder or to restore standard Schur form 
* 
            INFO = ICOND + N 
         END IF 
      END IF 
* 
      IF( WANTVS ) THEN 
* 
*        Undo balancing 
*        (RWorkspace: need N) 
* 
         CALL DGEBAK( 'P', 'R', N, ILO, IHI, WORK( IBAL ), N, VS, LDVS, 
     $                IERR ) 
      END IF 
* 
      IF( SCALEA ) THEN 
* 
*        Undo scaling for the Schur form of A 
* 
         CALL DLASCL( 'H', 0, 0, CSCALE, ANRM, N, N, A, LDA, IERR ) 
         CALL DCOPY( N, A, LDA+1, WR, 1 ) 
         IF( ( WANTSV .OR. WANTSB ) .AND. INFO.EQ.0 ) THEN 
            DUM( 1 ) = RCONDV 
            CALL DLASCL( 'G', 0, 0, CSCALE, ANRM, 1, 1, DUM, 1, IERR ) 
            RCONDV = DUM( 1 ) 
         END IF 
         IF( CSCALE.EQ.SMLNUM ) THEN 
* 
*           If scaling back towards underflow, adjust WI if an 
*           offdiagonal element of a 2-by-2 block in the Schur form 
*           underflows. 
* 
            IF( IEVAL.GT.0 ) THEN 
               I1 = IEVAL + 1 
               I2 = IHI - 1 
               CALL DLASCL( 'G', 0, 0, CSCALE, ANRM, ILO-1, 1, WI, N, 
     $                      IERR ) 
            ELSE IF( WANTST ) THEN 
               I1 = 1 
               I2 = N - 1 
            ELSE 
               I1 = ILO 
               I2 = IHI - 1 
            END IF 
            INXT = I1 - 1 
            DO 20 I = I1, I2 
               IF( I.LT.INXT ) 
     $            GO TO 20 
               IF( WI( I ).EQ.ZERO ) THEN 
                  INXT = I + 1 
               ELSE 
                  IF( A( I+1, I ).EQ.ZERO ) THEN 
                     WI( I ) = ZERO 
                     WI( I+1 ) = ZERO 
                  ELSE IF( A( I+1, I ).NE.ZERO .AND. A( I, I+1 ).EQ. 
     $                     ZERO ) THEN 
                     WI( I ) = ZERO 
                     WI( I+1 ) = ZERO 
                     IF( I.GT.1 ) 
     $                  CALL DSWAP( I-1, A( 1, I ), 1, A( 1, I+1 ), 1 ) 
                     IF( N.GT.I+1 ) 
     $                  CALL DSWAP( N-I-1, A( I, I+2 ), LDA, 
     $                              A( I+1, I+2 ), LDA ) 
                     CALL DSWAP( N, VS( 1, I ), 1, VS( 1, I+1 ), 1 ) 
                     A( I, I+1 ) = A( I+1, I ) 
                     A( I+1, I ) = ZERO 
                  END IF 
                  INXT = I + 2 
               END IF 
   20       CONTINUE 
         END IF 
         CALL DLASCL( 'G', 0, 0, CSCALE, ANRM, N-IEVAL, 1, 
     $                WI( IEVAL+1 ), MAX( N-IEVAL, 1 ), IERR ) 
      END IF 
* 
      IF( WANTST .AND. INFO.EQ.0 ) THEN 
* 
*        Check if reordering successful 
* 
         LASTSL = .TRUE. 
         LST2SL = .TRUE. 
         SDIM = 0 
         IP = 0 
         DO 30 I = 1, N 
            CURSL = SELECT( WR( I ), WI( I ) ) 
            IF( WI( I ).EQ.ZERO ) THEN 
               IF( CURSL ) 
     $            SDIM = SDIM + 1 
               IP = 0 
               IF( CURSL .AND. .NOT.LASTSL ) 
     $            INFO = N + 2 
            ELSE 
               IF( IP.EQ.1 ) THEN 
* 
*                 Last eigenvalue of conjugate pair 
* 
                  CURSL = CURSL .OR. LASTSL 
                  LASTSL = CURSL 
                  IF( CURSL ) 
     $               SDIM = SDIM + 2 
                  IP = -1 
                  IF( CURSL .AND. .NOT.LST2SL ) 
     $               INFO = N + 2 
               ELSE 
* 
*                 First eigenvalue of conjugate pair 
* 
                  IP = 1 
               END IF 
            END IF 
            LST2SL = LASTSL 
            LASTSL = CURSL 
   30    CONTINUE 
      END IF 
* 
      WORK( 1 ) = MAXWRK 
      IF( WANTSV .OR. WANTSB ) THEN 
         IWORK( 1 ) = MAX( 1, SDIM*( N-SDIM ) ) 
      ELSE 
         IWORK( 1 ) = 1 
      END IF 
* 
      RETURN 
* 
*     End of DGEESX 
* 
      END 
 
 |