1
       2
       3
       4
       5
       6
       7
       8
       9
      10
      11
      12
      13
      14
      15
      16
      17
      18
      19
      20
      21
      22
      23
      24
      25
      26
      27
      28
      29
      30
      31
      32
      33
      34
      35
      36
      37
      38
      39
      40
      41
      42
      43
      44
      45
      46
      47
      48
      49
      50
      51
      52
      53
      54
      55
      56
      57
      58
      59
      60
      61
      62
      63
      64
      65
      66
      67
      68
      69
      70
      71
      72
      73
      74
      75
      76
      77
      78
      79
      80
      81
      82
      83
      84
      85
      86
      87
      88
      89
      90
      91
      92
      93
      94
      95
      96
      97
      98
      99
     100
     101
     102
     103
     104
     105
     106
     107
     108
     109
     110
     111
     112
     113
     114
     115
     116
     117
     118
     119
     120
     121
     122
     123
     124
     125
     126
     127
     128
     129
     130
     131
     132
     133
     134
     135
     136
     137
     138
     139
     140
     141
     142
     143
     144
     145
     146
     147
     148
     149
     150
     151
     152
     153
     154
     155
     156
     157
     158
     159
     160
     161
     162
     163
     164
     165
     166
     167
     168
     169
     170
     171
     172
     173
     174
     175
     176
     177
     178
     179
     180
     181
     182
     183
     184
     185
     186
     187
     188
     189
     190
     191
     192
     193
     194
     195
     196
     197
     198
     199
     200
     201
     202
     203
     204
     205
     206
     207
     208
     209
     210
     211
     212
     213
     214
     215
     216
     217
     218
     219
     220
     221
     222
     223
     224
     225
     226
     227
     228
     229
     230
     231
     232
     233
     234
     235
     236
     237
     238
     239
     240
     241
     242
     243
     244
     245
     246
     247
     248
     249
     250
     251
     252
     253
     254
     255
     256
     257
     258
     259
     260
     261
     262
     263
     264
     265
     266
     267
     268
     269
     270
     271
     272
     273
     274
     275
     276
     277
     278
     279
     280
     281
     282
     283
     284
     285
     286
     287
     288
      SUBROUTINE DGEQP3( M, N, A, LDA, JPVT, TAU, WORK, LWORK, INFO )
*
*  -- LAPACK routine (version 3.3.1) --
*  -- LAPACK is a software package provided by Univ. of Tennessee,    --
*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
*  -- April 2011                                                      --
*
*     .. Scalar Arguments ..
      INTEGER            INFO, LDA, LWORK, M, N
*     ..
*     .. Array Arguments ..
      INTEGER            JPVT( * )
      DOUBLE PRECISION   A( LDA, * ), TAU( * ), WORK( * )
*     ..
*
*  Purpose
*  =======
*
*  DGEQP3 computes a QR factorization with column pivoting of a
*  matrix A:  A*P = Q*R  using Level 3 BLAS.
*
*  Arguments
*  =========
*
*  M       (input) INTEGER
*          The number of rows of the matrix A. M >= 0.
*
*  N       (input) INTEGER
*          The number of columns of the matrix A.  N >= 0.
*
*  A       (input/output) DOUBLE PRECISION array, dimension (LDA,N)
*          On entry, the M-by-N matrix A.
*          On exit, the upper triangle of the array contains the
*          min(M,N)-by-N upper trapezoidal matrix R; the elements below
*          the diagonal, together with the array TAU, represent the
*          orthogonal matrix Q as a product of min(M,N) elementary
*          reflectors.
*
*  LDA     (input) INTEGER
*          The leading dimension of the array A. LDA >= max(1,M).
*
*  JPVT    (input/output) INTEGER array, dimension (N)
*          On entry, if JPVT(J).ne.0, the J-th column of A is permuted
*          to the front of A*P (a leading column); if JPVT(J)=0,
*          the J-th column of A is a free column.
*          On exit, if JPVT(J)=K, then the J-th column of A*P was the
*          the K-th column of A.
*
*  TAU     (output) DOUBLE PRECISION array, dimension (min(M,N))
*          The scalar factors of the elementary reflectors.
*
*  WORK    (workspace/output) DOUBLE PRECISION array, dimension (MAX(1,LWORK))
*          On exit, if INFO=0, WORK(1) returns the optimal LWORK.
*
*  LWORK   (input) INTEGER
*          The dimension of the array WORK. LWORK >= 3*N+1.
*          For optimal performance LWORK >= 2*N+( N+1 )*NB, where NB
*          is the optimal blocksize.
*
*          If LWORK = -1, then a workspace query is assumed; the routine
*          only calculates the optimal size of the WORK array, returns
*          this value as the first entry of the WORK array, and no error
*          message related to LWORK is issued by XERBLA.
*
*  INFO    (output) INTEGER
*          = 0: successful exit.
*          < 0: if INFO = -i, the i-th argument had an illegal value.
*
*  Further Details
*  ===============
*
*  The matrix Q is represented as a product of elementary reflectors
*
*     Q = H(1) H(2) . . . H(k), where k = min(m,n).
*
*  Each H(i) has the form
*
*     H(i) = I - tau * v * v**T
*
*  where tau is a real/complex scalar, and v is a real/complex vector
*  with v(1:i-1) = 0 and v(i) = 1; v(i+1:m) is stored on exit in
*  A(i+1:m,i), and tau in TAU(i).
*
*  Based on contributions by
*    G. Quintana-Orti, Depto. de Informatica, Universidad Jaime I, Spain
*    X. Sun, Computer Science Dept., Duke University, USA
*
*  =====================================================================
*
*     .. Parameters ..
      INTEGER            INB, INBMIN, IXOVER
      PARAMETER          ( INB = 1, INBMIN = 2, IXOVER = 3 )
*     ..
*     .. Local Scalars ..
      LOGICAL            LQUERY
      INTEGER            FJB, IWS, J, JB, LWKOPT, MINMN, MINWS, NA, NB,
     $                   NBMIN, NFXD, NX, SM, SMINMN, SN, TOPBMN
*     ..
*     .. External Subroutines ..
      EXTERNAL           DGEQRF, DLAQP2, DLAQPS, DORMQR, DSWAP, XERBLA
*     ..
*     .. External Functions ..
      INTEGER            ILAENV
      DOUBLE PRECISION   DNRM2
      EXTERNAL           ILAENV, DNRM2
*     ..
*     .. Intrinsic Functions ..
      INTRINSIC          INTMAXMIN
*     ..
*     .. Executable Statements ..
*
*     Test input arguments
*     ====================
*
      INFO = 0
      LQUERY = ( LWORK.EQ.-1 )
      IF( M.LT.0 ) THEN
         INFO = -1
      ELSE IF( N.LT.0 ) THEN
         INFO = -2
      ELSE IF( LDA.LT.MAX1, M ) ) THEN
         INFO = -4
      END IF
*
      IF( INFO.EQ.0 ) THEN
         MINMN = MIN( M, N )
         IF( MINMN.EQ.0 ) THEN
            IWS = 1
            LWKOPT = 1
         ELSE
            IWS = 3*+ 1
            NB = ILAENV( INB, 'DGEQRF'' ', M, N, -1-1 )
            LWKOPT = 2*+ ( N + 1 )*NB
         END IF
         WORK( 1 ) = LWKOPT
*
         IF( ( LWORK.LT.IWS ) .AND. .NOT.LQUERY ) THEN
            INFO = -8
         END IF
      END IF
*
      IF( INFO.NE.0 ) THEN
         CALL XERBLA( 'DGEQP3'-INFO )
         RETURN
      ELSE IF( LQUERY ) THEN
         RETURN
      END IF
*
*     Quick return if possible.
*
      IF( MINMN.EQ.0 ) THEN
         RETURN
      END IF
*
*     Move initial columns up front.
*
      NFXD = 1
      DO 10 J = 1, N
         IF( JPVT( J ).NE.0 ) THEN
            IF( J.NE.NFXD ) THEN
               CALL DSWAP( M, A( 1, J ), 1, A( 1, NFXD ), 1 )
               JPVT( J ) = JPVT( NFXD )
               JPVT( NFXD ) = J
            ELSE
               JPVT( J ) = J
            END IF
            NFXD = NFXD + 1
         ELSE
            JPVT( J ) = J
         END IF
   10 CONTINUE
      NFXD = NFXD - 1
*
*     Factorize fixed columns
*     =======================
*
*     Compute the QR factorization of fixed columns and update
*     remaining columns.
*
      IF( NFXD.GT.0 ) THEN
         NA = MIN( M, NFXD )
*CC      CALL DGEQR2( M, NA, A, LDA, TAU, WORK, INFO )
         CALL DGEQRF( M, NA, A, LDA, TAU, WORK, LWORK, INFO )
         IWS = MAX( IWS, INT( WORK( 1 ) ) )
         IF( NA.LT.N ) THEN
*CC         CALL DORM2R( 'Left', 'Transpose', M, N-NA, NA, A, LDA,
*CC  $                   TAU, A( 1, NA+1 ), LDA, WORK, INFO )
            CALL DORMQR( 'Left''Transpose', M, N-NA, NA, A, LDA, TAU,
     $                   A( 1, NA+1 ), LDA, WORK, LWORK, INFO )
            IWS = MAX( IWS, INT( WORK( 1 ) ) )
         END IF
      END IF
*
*     Factorize free columns
*     ======================
*
      IF( NFXD.LT.MINMN ) THEN
*
         SM = M - NFXD
         SN = N - NFXD
         SMINMN = MINMN - NFXD
*
*        Determine the block size.
*
         NB = ILAENV( INB, 'DGEQRF'' ', SM, SN, -1-1 )
         NBMIN = 2
         NX = 0
*
         IF( ( NB.GT.1 ) .AND. ( NB.LT.SMINMN ) ) THEN
*
*           Determine when to cross over from blocked to unblocked code.
*
            NX = MAX0, ILAENV( IXOVER, 'DGEQRF'' ', SM, SN, -1,
     $           -1 ) )
*
*
            IF( NX.LT.SMINMN ) THEN
*
*              Determine if workspace is large enough for blocked code.
*
               MINWS = 2*SN + ( SN+1 )*NB
               IWS = MAX( IWS, MINWS )
               IF( LWORK.LT.MINWS ) THEN
*
*                 Not enough workspace to use optimal NB: Reduce NB and
*                 determine the minimum value of NB.
*
                  NB = ( LWORK-2*SN ) / ( SN+1 )
                  NBMIN = MAX2, ILAENV( INBMIN, 'DGEQRF'' ', SM, SN,
     $                    -1-1 ) )
*
*
               END IF
            END IF
         END IF
*
*        Initialize partial column norms. The first N elements of work
*        store the exact column norms.
*
         DO 20 J = NFXD + 1, N
            WORK( J ) = DNRM2( SM, A( NFXD+1, J ), 1 )
            WORK( N+J ) = WORK( J )
   20    CONTINUE
*
         IF( ( NB.GE.NBMIN ) .AND. ( NB.LT.SMINMN ) .AND.
     $       ( NX.LT.SMINMN ) ) THEN
*
*           Use blocked code initially.
*
            J = NFXD + 1
*
*           Compute factorization: while loop.
*
*
            TOPBMN = MINMN - NX
   30       CONTINUE
            IF( J.LE.TOPBMN ) THEN
               JB = MIN( NB, TOPBMN-J+1 )
*
*              Factorize JB columns among columns J:N.
*
               CALL DLAQPS( M, N-J+1, J-1, JB, FJB, A( 1, J ), LDA,
     $                      JPVT( J ), TAU( J ), WORK( J ), WORK( N+J ),
     $                      WORK( 2*N+1 ), WORK( 2*N+JB+1 ), N-J+1 )
*
               J = J + FJB
               GO TO 30
            END IF
         ELSE
            J = NFXD + 1
         END IF
*
*        Use unblocked code to factor the last or only block.
*
*
         IF( J.LE.MINMN )
     $      CALL DLAQP2( M, N-J+1, J-1, A( 1, J ), LDA, JPVT( J ),
     $                   TAU( J ), WORK( J ), WORK( N+J ),
     $                   WORK( 2*N+1 ) )
*
      END IF
*
      WORK( 1 ) = IWS
      RETURN
*
*     End of DGEQP3
*
      END