1
       2
       3
       4
       5
       6
       7
       8
       9
      10
      11
      12
      13
      14
      15
      16
      17
      18
      19
      20
      21
      22
      23
      24
      25
      26
      27
      28
      29
      30
      31
      32
      33
      34
      35
      36
      37
      38
      39
      40
      41
      42
      43
      44
      45
      46
      47
      48
      49
      50
      51
      52
      53
      54
      55
      56
      57
      58
      59
      60
      61
      62
      63
      64
      65
      66
      67
      68
      69
      70
      71
      72
      73
      74
      75
      76
      77
      78
      79
      80
      81
      82
      83
      84
      85
      86
      87
      88
      89
      90
      91
      92
      93
      94
      95
      96
      97
      98
      99
     100
     101
     102
     103
     104
     105
     106
     107
     108
     109
     110
     111
     112
     113
     114
     115
     116
     117
     118
     119
     120
     121
     122
     123
     124
     125
     126
     127
     128
     129
     130
     131
     132
     133
     134
     135
     136
     137
     138
     139
     140
     141
     142
     143
     144
     145
     146
     147
     148
     149
     150
     151
     152
     153
     154
     155
     156
     157
     158
     159
     160
     161
     162
     163
     164
     165
     166
     167
     168
     169
     170
     171
     172
     173
     174
     175
     176
     177
     178
     179
     180
     181
     182
     183
     184
     185
     186
     187
     188
     189
     190
     191
     192
     193
     194
     195
     196
     197
     198
     199
     200
     201
     202
     203
     204
     205
     206
     207
     208
     209
     210
     211
     212
     213
     214
     215
     216
     217
     218
     219
     220
     221
     222
     223
     224
     225
     226
     227
     228
     229
     230
     231
     232
     233
     234
     235
     236
     237
     238
     239
     240
     241
     242
     243
     244
     245
     246
     247
     248
     249
     250
     251
     252
     253
     254
     255
     256
     257
     258
     259
     260
     261
     262
     263
     264
     265
     266
     267
     268
     269
     270
     271
     272
     273
     274
     275
     276
     277
     278
     279
     280
     281
     282
     283
     284
     285
     286
     287
     288
     289
     290
     291
     292
     293
     294
     295
     296
     297
     298
     299
     300
     301
     302
     303
     304
     305
     306
     307
     308
     309
     310
     311
     312
     313
     314
     315
     316
     317
     318
     319
     320
     321
     322
     323
     324
     325
     326
     327
     328
     329
     330
     331
     332
     333
     334
     335
     336
     337
     338
     339
     340
     341
     342
     343
     344
     345
     346
     347
     348
     349
     350
     351
     352
     353
     354
     355
     356
     357
     358
     359
     360
     361
     362
     363
     364
     365
     366
     367
     368
     369
     370
     371
     372
     373
     374
     375
     376
     377
     378
     379
     380
     381
     382
     383
     384
     385
     386
     387
     388
     389
     390
     391
     392
     393
     394
     395
     396
     397
     398
     399
     400
     401
     402
     403
     404
     405
     406
     407
     408
     409
     410
     411
     412
     413
     414
     415
     416
     417
     418
     419
     420
     421
     422
     423
     424
     425
     426
     427
     428
     429
     430
     431
     432
     433
     434
     435
     436
     437
     438
     439
     440
     441
     442
     443
     444
     445
     446
     447
     448
     449
     450
     451
     452
     453
     454
     455
     456
     457
     458
     459
     460
     461
     462
     463
     464
     465
     466
     467
     468
     469
     470
     471
     472
     473
     474
     475
     476
     477
     478
     479
     480
      SUBROUTINE DGESVX( FACT, TRANS, N, NRHS, A, LDA, AF, LDAF, IPIV,
     $                   EQUED, R, C, B, LDB, X, LDX, RCOND, FERR, BERR,
     $                   WORK, IWORK, INFO )
*
*  -- LAPACK driver routine (version 3.2) --
*  -- LAPACK is a software package provided by Univ. of Tennessee,    --
*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
*     November 2006
*
*     .. Scalar Arguments ..
      CHARACTER          EQUED, FACT, TRANS
      INTEGER            INFO, LDA, LDAF, LDB, LDX, N, NRHS
      DOUBLE PRECISION   RCOND
*     ..
*     .. Array Arguments ..
      INTEGER            IPIV( * ), IWORK( * )
      DOUBLE PRECISION   A( LDA, * ), AF( LDAF, * ), B( LDB, * ),
     $                   BERR( * ), C( * ), FERR( * ), R( * ),
     $                   WORK( * ), X( LDX, * )
*     ..
*
*  Purpose
*  =======
*
*  DGESVX uses the LU factorization to compute the solution to a real
*  system of linear equations
*     A * X = B,
*  where A is an N-by-N matrix and X and B are N-by-NRHS matrices.
*
*  Error bounds on the solution and a condition estimate are also
*  provided.
*
*  Description
*  ===========
*
*  The following steps are performed:
*
*  1. If FACT = 'E', real scaling factors are computed to equilibrate
*     the system:
*        TRANS = 'N':  diag(R)*A*diag(C)     *inv(diag(C))*X = diag(R)*B
*        TRANS = 'T': (diag(R)*A*diag(C))**T *inv(diag(R))*X = diag(C)*B
*        TRANS = 'C': (diag(R)*A*diag(C))**H *inv(diag(R))*X = diag(C)*B
*     Whether or not the system will be equilibrated depends on the
*     scaling of the matrix A, but if equilibration is used, A is
*     overwritten by diag(R)*A*diag(C) and B by diag(R)*B (if TRANS='N')
*     or diag(C)*B (if TRANS = 'T' or 'C').
*
*  2. If FACT = 'N' or 'E', the LU decomposition is used to factor the
*     matrix A (after equilibration if FACT = 'E') as
*        A = P * L * U,
*     where P is a permutation matrix, L is a unit lower triangular
*     matrix, and U is upper triangular.
*
*  3. If some U(i,i)=0, so that U is exactly singular, then the routine
*     returns with INFO = i. Otherwise, the factored form of A is used
*     to estimate the condition number of the matrix A.  If the
*     reciprocal of the condition number is less than machine precision,
*     INFO = N+1 is returned as a warning, but the routine still goes on
*     to solve for X and compute error bounds as described below.
*
*  4. The system of equations is solved for X using the factored form
*     of A.
*
*  5. Iterative refinement is applied to improve the computed solution
*     matrix and calculate error bounds and backward error estimates
*     for it.
*
*  6. If equilibration was used, the matrix X is premultiplied by
*     diag(C) (if TRANS = 'N') or diag(R) (if TRANS = 'T' or 'C') so
*     that it solves the original system before equilibration.
*
*  Arguments
*  =========
*
*  FACT    (input) CHARACTER*1
*          Specifies whether or not the factored form of the matrix A is
*          supplied on entry, and if not, whether the matrix A should be
*          equilibrated before it is factored.
*          = 'F':  On entry, AF and IPIV contain the factored form of A.
*                  If EQUED is not 'N', the matrix A has been
*                  equilibrated with scaling factors given by R and C.
*                  A, AF, and IPIV are not modified.
*          = 'N':  The matrix A will be copied to AF and factored.
*          = 'E':  The matrix A will be equilibrated if necessary, then
*                  copied to AF and factored.
*
*  TRANS   (input) CHARACTER*1
*          Specifies the form of the system of equations:
*          = 'N':  A * X = B     (No transpose)
*          = 'T':  A**T * X = B  (Transpose)
*          = 'C':  A**H * X = B  (Transpose)
*
*  N       (input) INTEGER
*          The number of linear equations, i.e., the order of the
*          matrix A.  N >= 0.
*
*  NRHS    (input) INTEGER
*          The number of right hand sides, i.e., the number of columns
*          of the matrices B and X.  NRHS >= 0.
*
*  A       (input/output) DOUBLE PRECISION array, dimension (LDA,N)
*          On entry, the N-by-N matrix A.  If FACT = 'F' and EQUED is
*          not 'N', then A must have been equilibrated by the scaling
*          factors in R and/or C.  A is not modified if FACT = 'F' or
*          'N', or if FACT = 'E' and EQUED = 'N' on exit.
*
*          On exit, if EQUED .ne. 'N', A is scaled as follows:
*          EQUED = 'R':  A := diag(R) * A
*          EQUED = 'C':  A := A * diag(C)
*          EQUED = 'B':  A := diag(R) * A * diag(C).
*
*  LDA     (input) INTEGER
*          The leading dimension of the array A.  LDA >= max(1,N).
*
*  AF      (input or output) DOUBLE PRECISION array, dimension (LDAF,N)
*          If FACT = 'F', then AF is an input argument and on entry
*          contains the factors L and U from the factorization
*          A = P*L*U as computed by DGETRF.  If EQUED .ne. 'N', then
*          AF is the factored form of the equilibrated matrix A.
*
*          If FACT = 'N', then AF is an output argument and on exit
*          returns the factors L and U from the factorization A = P*L*U
*          of the original matrix A.
*
*          If FACT = 'E', then AF is an output argument and on exit
*          returns the factors L and U from the factorization A = P*L*U
*          of the equilibrated matrix A (see the description of A for
*          the form of the equilibrated matrix).
*
*  LDAF    (input) INTEGER
*          The leading dimension of the array AF.  LDAF >= max(1,N).
*
*  IPIV    (input or output) INTEGER array, dimension (N)
*          If FACT = 'F', then IPIV is an input argument and on entry
*          contains the pivot indices from the factorization A = P*L*U
*          as computed by DGETRF; row i of the matrix was interchanged
*          with row IPIV(i).
*
*          If FACT = 'N', then IPIV is an output argument and on exit
*          contains the pivot indices from the factorization A = P*L*U
*          of the original matrix A.
*
*          If FACT = 'E', then IPIV is an output argument and on exit
*          contains the pivot indices from the factorization A = P*L*U
*          of the equilibrated matrix A.
*
*  EQUED   (input or output) CHARACTER*1
*          Specifies the form of equilibration that was done.
*          = 'N':  No equilibration (always true if FACT = 'N').
*          = 'R':  Row equilibration, i.e., A has been premultiplied by
*                  diag(R).
*          = 'C':  Column equilibration, i.e., A has been postmultiplied
*                  by diag(C).
*          = 'B':  Both row and column equilibration, i.e., A has been
*                  replaced by diag(R) * A * diag(C).
*          EQUED is an input argument if FACT = 'F'; otherwise, it is an
*          output argument.
*
*  R       (input or output) DOUBLE PRECISION array, dimension (N)
*          The row scale factors for A.  If EQUED = 'R' or 'B', A is
*          multiplied on the left by diag(R); if EQUED = 'N' or 'C', R
*          is not accessed.  R is an input argument if FACT = 'F';
*          otherwise, R is an output argument.  If FACT = 'F' and
*          EQUED = 'R' or 'B', each element of R must be positive.
*
*  C       (input or output) DOUBLE PRECISION array, dimension (N)
*          The column scale factors for A.  If EQUED = 'C' or 'B', A is
*          multiplied on the right by diag(C); if EQUED = 'N' or 'R', C
*          is not accessed.  C is an input argument if FACT = 'F';
*          otherwise, C is an output argument.  If FACT = 'F' and
*          EQUED = 'C' or 'B', each element of C must be positive.
*
*  B       (input/output) DOUBLE PRECISION array, dimension (LDB,NRHS)
*          On entry, the N-by-NRHS right hand side matrix B.
*          On exit,
*          if EQUED = 'N', B is not modified;
*          if TRANS = 'N' and EQUED = 'R' or 'B', B is overwritten by
*          diag(R)*B;
*          if TRANS = 'T' or 'C' and EQUED = 'C' or 'B', B is
*          overwritten by diag(C)*B.
*
*  LDB     (input) INTEGER
*          The leading dimension of the array B.  LDB >= max(1,N).
*
*  X       (output) DOUBLE PRECISION array, dimension (LDX,NRHS)
*          If INFO = 0 or INFO = N+1, the N-by-NRHS solution matrix X
*          to the original system of equations.  Note that A and B are
*          modified on exit if EQUED .ne. 'N', and the solution to the
*          equilibrated system is inv(diag(C))*X if TRANS = 'N' and
*          EQUED = 'C' or 'B', or inv(diag(R))*X if TRANS = 'T' or 'C'
*          and EQUED = 'R' or 'B'.
*
*  LDX     (input) INTEGER
*          The leading dimension of the array X.  LDX >= max(1,N).
*
*  RCOND   (output) DOUBLE PRECISION
*          The estimate of the reciprocal condition number of the matrix
*          A after equilibration (if done).  If RCOND is less than the
*          machine precision (in particular, if RCOND = 0), the matrix
*          is singular to working precision.  This condition is
*          indicated by a return code of INFO > 0.
*
*  FERR    (output) DOUBLE PRECISION array, dimension (NRHS)
*          The estimated forward error bound for each solution vector
*          X(j) (the j-th column of the solution matrix X).
*          If XTRUE is the true solution corresponding to X(j), FERR(j)
*          is an estimated upper bound for the magnitude of the largest
*          element in (X(j) - XTRUE) divided by the magnitude of the
*          largest element in X(j).  The estimate is as reliable as
*          the estimate for RCOND, and is almost always a slight
*          overestimate of the true error.
*
*  BERR    (output) DOUBLE PRECISION array, dimension (NRHS)
*          The componentwise relative backward error of each solution
*          vector X(j) (i.e., the smallest relative change in
*          any element of A or B that makes X(j) an exact solution).
*
*  WORK    (workspace/output) DOUBLE PRECISION array, dimension (4*N)
*          On exit, WORK(1) contains the reciprocal pivot growth
*          factor norm(A)/norm(U). The "max absolute element" norm is
*          used. If WORK(1) is much less than 1, then the stability
*          of the LU factorization of the (equilibrated) matrix A
*          could be poor. This also means that the solution X, condition
*          estimator RCOND, and forward error bound FERR could be
*          unreliable. If factorization fails with 0<INFO<=N, then
*          WORK(1) contains the reciprocal pivot growth factor for the
*          leading INFO columns of A.
*
*  IWORK   (workspace) INTEGER array, dimension (N)
*
*  INFO    (output) INTEGER
*          = 0:  successful exit
*          < 0:  if INFO = -i, the i-th argument had an illegal value
*          > 0:  if INFO = i, and i is
*                <= N:  U(i,i) is exactly zero.  The factorization has
*                       been completed, but the factor U is exactly
*                       singular, so the solution and error bounds
*                       could not be computed. RCOND = 0 is returned.
*                = N+1: U is nonsingular, but RCOND is less than machine
*                       precision, meaning that the matrix is singular
*                       to working precision.  Nevertheless, the
*                       solution and error bounds are computed because
*                       there are a number of situations where the
*                       computed solution can be more accurate than the
*                       value of RCOND would suggest.
*
*  =====================================================================
*
*     .. Parameters ..
      DOUBLE PRECISION   ZERO, ONE
      PARAMETER          ( ZERO = 0.0D+0, ONE = 1.0D+0 )
*     ..
*     .. Local Scalars ..
      LOGICAL            COLEQU, EQUIL, NOFACT, NOTRAN, ROWEQU
      CHARACTER          NORM
      INTEGER            I, INFEQU, J
      DOUBLE PRECISION   AMAX, ANORM, BIGNUM, COLCND, RCMAX, RCMIN,
     $                   ROWCND, RPVGRW, SMLNUM
*     ..
*     .. External Functions ..
      LOGICAL            LSAME
      DOUBLE PRECISION   DLAMCH, DLANGE, DLANTR
      EXTERNAL           LSAME, DLAMCH, DLANGE, DLANTR
*     ..
*     .. External Subroutines ..
      EXTERNAL           DGECON, DGEEQU, DGERFS, DGETRF, DGETRS, DLACPY,
     $                   DLAQGE, XERBLA
*     ..
*     .. Intrinsic Functions ..
      INTRINSIC          MAXMIN
*     ..
*     .. Executable Statements ..
*
      INFO = 0
      NOFACT = LSAME( FACT, 'N' )
      EQUIL = LSAME( FACT, 'E' )
      NOTRAN = LSAME( TRANS, 'N' )
      IF( NOFACT .OR. EQUIL ) THEN
         EQUED = 'N'
         ROWEQU = .FALSE.
         COLEQU = .FALSE.
      ELSE
         ROWEQU = LSAME( EQUED, 'R' ) .OR. LSAME( EQUED, 'B' )
         COLEQU = LSAME( EQUED, 'C' ) .OR. LSAME( EQUED, 'B' )
         SMLNUM = DLAMCH( 'Safe minimum' )
         BIGNUM = ONE / SMLNUM
      END IF
*
*     Test the input parameters.
*
      IF.NOT.NOFACT .AND. .NOT.EQUIL .AND. .NOT.LSAME( FACT, 'F' ) )
     $     THEN
         INFO = -1
      ELSE IF.NOT.NOTRAN .AND. .NOT.LSAME( TRANS, 'T' ) .AND. .NOT.
     $         LSAME( TRANS, 'C' ) ) THEN
         INFO = -2
      ELSE IF( N.LT.0 ) THEN
         INFO = -3
      ELSE IF( NRHS.LT.0 ) THEN
         INFO = -4
      ELSE IF( LDA.LT.MAX1, N ) ) THEN
         INFO = -6
      ELSE IF( LDAF.LT.MAX1, N ) ) THEN
         INFO = -8
      ELSE IF( LSAME( FACT, 'F' ) .AND. .NOT.
     $         ( ROWEQU .OR. COLEQU .OR. LSAME( EQUED, 'N' ) ) ) THEN
         INFO = -10
      ELSE
         IF( ROWEQU ) THEN
            RCMIN = BIGNUM
            RCMAX = ZERO
            DO 10 J = 1, N
               RCMIN = MIN( RCMIN, R( J ) )
               RCMAX = MAX( RCMAX, R( J ) )
   10       CONTINUE
            IF( RCMIN.LE.ZERO ) THEN
               INFO = -11
            ELSE IF( N.GT.0 ) THEN
               ROWCND = MAX( RCMIN, SMLNUM ) / MIN( RCMAX, BIGNUM )
            ELSE
               ROWCND = ONE
            END IF
         END IF
         IF( COLEQU .AND. INFO.EQ.0 ) THEN
            RCMIN = BIGNUM
            RCMAX = ZERO
            DO 20 J = 1, N
               RCMIN = MIN( RCMIN, C( J ) )
               RCMAX = MAX( RCMAX, C( J ) )
   20       CONTINUE
            IF( RCMIN.LE.ZERO ) THEN
               INFO = -12
            ELSE IF( N.GT.0 ) THEN
               COLCND = MAX( RCMIN, SMLNUM ) / MIN( RCMAX, BIGNUM )
            ELSE
               COLCND = ONE
            END IF
         END IF
         IF( INFO.EQ.0 ) THEN
            IF( LDB.LT.MAX1, N ) ) THEN
               INFO = -14
            ELSE IF( LDX.LT.MAX1, N ) ) THEN
               INFO = -16
            END IF
         END IF
      END IF
*
      IF( INFO.NE.0 ) THEN
         CALL XERBLA( 'DGESVX'-INFO )
         RETURN
      END IF
*
      IF( EQUIL ) THEN
*
*        Compute row and column scalings to equilibrate the matrix A.
*
         CALL DGEEQU( N, N, A, LDA, R, C, ROWCND, COLCND, AMAX, INFEQU )
         IF( INFEQU.EQ.0 ) THEN
*
*           Equilibrate the matrix.
*
            CALL DLAQGE( N, N, A, LDA, R, C, ROWCND, COLCND, AMAX,
     $                   EQUED )
            ROWEQU = LSAME( EQUED, 'R' ) .OR. LSAME( EQUED, 'B' )
            COLEQU = LSAME( EQUED, 'C' ) .OR. LSAME( EQUED, 'B' )
         END IF
      END IF
*
*     Scale the right hand side.
*
      IF( NOTRAN ) THEN
         IF( ROWEQU ) THEN
            DO 40 J = 1, NRHS
               DO 30 I = 1, N
                  B( I, J ) = R( I )*B( I, J )
   30          CONTINUE
   40       CONTINUE
         END IF
      ELSE IF( COLEQU ) THEN
         DO 60 J = 1, NRHS
            DO 50 I = 1, N
               B( I, J ) = C( I )*B( I, J )
   50       CONTINUE
   60    CONTINUE
      END IF
*
      IF( NOFACT .OR. EQUIL ) THEN
*
*        Compute the LU factorization of A.
*
         CALL DLACPY( 'Full', N, N, A, LDA, AF, LDAF )
         CALL DGETRF( N, N, AF, LDAF, IPIV, INFO )
*
*        Return if INFO is non-zero.
*
         IF( INFO.GT.0 ) THEN
*
*           Compute the reciprocal pivot growth factor of the
*           leading rank-deficient INFO columns of A.
*
            RPVGRW = DLANTR( 'M''U''N', INFO, INFO, AF, LDAF,
     $               WORK )
            IF( RPVGRW.EQ.ZERO ) THEN
               RPVGRW = ONE
            ELSE
               RPVGRW = DLANGE( 'M', N, INFO, A, LDA, WORK ) / RPVGRW
            END IF
            WORK( 1 ) = RPVGRW
            RCOND = ZERO
            RETURN
         END IF
      END IF
*
*     Compute the norm of the matrix A and the
*     reciprocal pivot growth factor RPVGRW.
*
      IF( NOTRAN ) THEN
         NORM = '1'
      ELSE
         NORM = 'I'
      END IF
      ANORM = DLANGE( NORM, N, N, A, LDA, WORK )
      RPVGRW = DLANTR( 'M''U''N', N, N, AF, LDAF, WORK )
      IF( RPVGRW.EQ.ZERO ) THEN
         RPVGRW = ONE
      ELSE
         RPVGRW = DLANGE( 'M', N, N, A, LDA, WORK ) / RPVGRW
      END IF
*
*     Compute the reciprocal of the condition number of A.
*
      CALL DGECON( NORM, N, AF, LDAF, ANORM, RCOND, WORK, IWORK, INFO )
*
*     Compute the solution matrix X.
*
      CALL DLACPY( 'Full', N, NRHS, B, LDB, X, LDX )
      CALL DGETRS( TRANS, N, NRHS, AF, LDAF, IPIV, X, LDX, INFO )
*
*     Use iterative refinement to improve the computed solution and
*     compute error bounds and backward error estimates for it.
*
      CALL DGERFS( TRANS, N, NRHS, A, LDA, AF, LDAF, IPIV, B, LDB, X,
     $             LDX, FERR, BERR, WORK, IWORK, INFO )
*
*     Transform the solution matrix X to a solution of the original
*     system.
*
      IF( NOTRAN ) THEN
         IF( COLEQU ) THEN
            DO 80 J = 1, NRHS
               DO 70 I = 1, N
                  X( I, J ) = C( I )*X( I, J )
   70          CONTINUE
   80       CONTINUE
            DO 90 J = 1, NRHS
               FERR( J ) = FERR( J ) / COLCND
   90       CONTINUE
         END IF
      ELSE IF( ROWEQU ) THEN
         DO 110 J = 1, NRHS
            DO 100 I = 1, N
               X( I, J ) = R( I )*X( I, J )
  100       CONTINUE
  110    CONTINUE
         DO 120 J = 1, NRHS
            FERR( J ) = FERR( J ) / ROWCND
  120    CONTINUE
      END IF
*
      WORK( 1 ) = RPVGRW
*
*     Set INFO = N+1 if the matrix is singular to working precision.
*
      IF( RCOND.LT.DLAMCH( 'Epsilon' ) )
     $   INFO = N + 1
      RETURN
*
*     End of DGESVX
*
      END