1
       2
       3
       4
       5
       6
       7
       8
       9
      10
      11
      12
      13
      14
      15
      16
      17
      18
      19
      20
      21
      22
      23
      24
      25
      26
      27
      28
      29
      30
      31
      32
      33
      34
      35
      36
      37
      38
      39
      40
      41
      42
      43
      44
      45
      46
      47
      48
      49
      50
      51
      52
      53
      54
      55
      56
      57
      58
      59
      60
      61
      62
      63
      64
      65
      66
      67
      68
      69
      70
      71
      72
      73
      74
      75
      76
      77
      78
      79
      80
      81
      82
      83
      84
      85
      86
      87
      88
      89
      90
      91
      92
      93
      94
      95
      96
      97
      98
      99
     100
     101
     102
     103
     104
     105
     106
     107
     108
     109
     110
     111
     112
     113
     114
     115
     116
     117
     118
     119
     120
     121
     122
     123
     124
     125
     126
     127
     128
     129
     130
     131
     132
     133
     134
     135
     136
     137
     138
     139
     140
     141
     142
     143
     144
     145
     146
     147
     148
     149
     150
     151
     152
     153
     154
     155
     156
     157
     158
     159
     160
     161
     162
     163
     164
     165
     166
     167
     168
     169
     170
     171
     172
     173
     174
     175
     176
     177
     178
     179
     180
     181
     182
     183
     184
     185
     186
     187
     188
     189
     190
     191
     192
     193
     194
     195
     196
     197
     198
     199
     200
     201
     202
     203
     204
     205
     206
     207
     208
     209
     210
     211
     212
     213
     214
     215
     216
     217
     218
     219
     220
     221
     222
     223
     224
     225
     226
     227
     228
     229
     230
     231
     232
     233
     234
     235
     236
     237
     238
     239
     240
     241
     242
     243
     244
     245
     246
     247
     248
     249
     250
     251
     252
     253
     254
     255
     256
     257
     258
     259
     260
     261
     262
     263
     264
     265
     266
     267
     268
     269
     270
     271
     272
     273
     274
     275
     276
     277
     278
     279
     280
     281
     282
     283
     284
     285
     286
     287
     288
     289
     290
     291
     292
     293
     294
     295
     296
     297
     298
     299
     300
     301
     302
     303
     304
     305
     306
     307
     308
     309
     310
     311
     312
     313
     314
     315
     316
     317
     318
     319
     320
     321
     322
     323
     324
     325
     326
     327
     328
     329
     330
     331
     332
     333
     334
     335
     336
      SUBROUTINE DGGSVD( JOBU, JOBV, JOBQ, M, N, P, K, L, A, LDA, B,
     $                   LDB, ALPHA, BETA, U, LDU, V, LDV, Q, LDQ, WORK,
     $                   IWORK, INFO )
*
*  -- LAPACK driver routine (version 3.3.1) --
*  -- LAPACK is a software package provided by Univ. of Tennessee,    --
*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
*  -- April 2011                                                      --
*
*     .. Scalar Arguments ..
      CHARACTER          JOBQ, JOBU, JOBV
      INTEGER            INFO, K, L, LDA, LDB, LDQ, LDU, LDV, M, N, P
*     ..
*     .. Array Arguments ..
      INTEGER            IWORK( * )
      DOUBLE PRECISION   A( LDA, * ), ALPHA( * ), B( LDB, * ),
     $                   BETA( * ), Q( LDQ, * ), U( LDU, * ),
     $                   V( LDV, * ), WORK( * )
*     ..
*
*  Purpose
*  =======
*
*  DGGSVD computes the generalized singular value decomposition (GSVD)
*  of an M-by-N real matrix A and P-by-N real matrix B:
*
*        U**T*A*Q = D1*( 0 R ),    V**T*B*Q = D2*( 0 R )
*
*  where U, V and Q are orthogonal matrices.
*  Let K+L = the effective numerical rank of the matrix (A**T,B**T)**T,
*  then R is a K+L-by-K+L nonsingular upper triangular matrix, D1 and
*  D2 are M-by-(K+L) and P-by-(K+L) "diagonal" matrices and of the
*  following structures, respectively:
*
*  If M-K-L >= 0,
*
*                      K  L
*         D1 =     K ( I  0 )
*                  L ( 0  C )
*              M-K-L ( 0  0 )
*
*                    K  L
*         D2 =   L ( 0  S )
*              P-L ( 0  0 )
*
*                  N-K-L  K    L
*    ( 0 R ) = K (  0   R11  R12 )
*              L (  0    0   R22 )
*
*  where
*
*    C = diag( ALPHA(K+1), ... , ALPHA(K+L) ),
*    S = diag( BETA(K+1),  ... , BETA(K+L) ),
*    C**2 + S**2 = I.
*
*    R is stored in A(1:K+L,N-K-L+1:N) on exit.
*
*  If M-K-L < 0,
*
*                    K M-K K+L-M
*         D1 =   K ( I  0    0   )
*              M-K ( 0  C    0   )
*
*                      K M-K K+L-M
*         D2 =   M-K ( 0  S    0  )
*              K+L-M ( 0  0    I  )
*                P-L ( 0  0    0  )
*
*                     N-K-L  K   M-K  K+L-M
*    ( 0 R ) =     K ( 0    R11  R12  R13  )
*                M-K ( 0     0   R22  R23  )
*              K+L-M ( 0     0    0   R33  )
*
*  where
*
*    C = diag( ALPHA(K+1), ... , ALPHA(M) ),
*    S = diag( BETA(K+1),  ... , BETA(M) ),
*    C**2 + S**2 = I.
*
*    (R11 R12 R13 ) is stored in A(1:M, N-K-L+1:N), and R33 is stored
*    ( 0  R22 R23 )
*    in B(M-K+1:L,N+M-K-L+1:N) on exit.
*
*  The routine computes C, S, R, and optionally the orthogonal
*  transformation matrices U, V and Q.
*
*  In particular, if B is an N-by-N nonsingular matrix, then the GSVD of
*  A and B implicitly gives the SVD of A*inv(B):
*                       A*inv(B) = U*(D1*inv(D2))*V**T.
*  If ( A**T,B**T)**T  has orthonormal columns, then the GSVD of A and B is
*  also equal to the CS decomposition of A and B. Furthermore, the GSVD
*  can be used to derive the solution of the eigenvalue problem:
*                       A**T*A x = lambda* B**T*B x.
*  In some literature, the GSVD of A and B is presented in the form
*                   U**T*A*X = ( 0 D1 ),   V**T*B*X = ( 0 D2 )
*  where U and V are orthogonal and X is nonsingular, D1 and D2 are
*  ``diagonal''.  The former GSVD form can be converted to the latter
*  form by taking the nonsingular matrix X as
*
*                       X = Q*( I   0    )
*                             ( 0 inv(R) ).
*
*  Arguments
*  =========
*
*  JOBU    (input) CHARACTER*1
*          = 'U':  Orthogonal matrix U is computed;
*          = 'N':  U is not computed.
*
*  JOBV    (input) CHARACTER*1
*          = 'V':  Orthogonal matrix V is computed;
*          = 'N':  V is not computed.
*
*  JOBQ    (input) CHARACTER*1
*          = 'Q':  Orthogonal matrix Q is computed;
*          = 'N':  Q is not computed.
*
*  M       (input) INTEGER
*          The number of rows of the matrix A.  M >= 0.
*
*  N       (input) INTEGER
*          The number of columns of the matrices A and B.  N >= 0.
*
*  P       (input) INTEGER
*          The number of rows of the matrix B.  P >= 0.
*
*  K       (output) INTEGER
*  L       (output) INTEGER
*          On exit, K and L specify the dimension of the subblocks
*          described in the Purpose section.
*          K + L = effective numerical rank of (A**T,B**T)**T.
*
*  A       (input/output) DOUBLE PRECISION array, dimension (LDA,N)
*          On entry, the M-by-N matrix A.
*          On exit, A contains the triangular matrix R, or part of R.
*          See Purpose for details.
*
*  LDA     (input) INTEGER
*          The leading dimension of the array A. LDA >= max(1,M).
*
*  B       (input/output) DOUBLE PRECISION array, dimension (LDB,N)
*          On entry, the P-by-N matrix B.
*          On exit, B contains the triangular matrix R if M-K-L < 0.
*          See Purpose for details.
*
*  LDB     (input) INTEGER
*          The leading dimension of the array B. LDB >= max(1,P).
*
*  ALPHA   (output) DOUBLE PRECISION array, dimension (N)
*  BETA    (output) DOUBLE PRECISION array, dimension (N)
*          On exit, ALPHA and BETA contain the generalized singular
*          value pairs of A and B;
*            ALPHA(1:K) = 1,
*            BETA(1:K)  = 0,
*          and if M-K-L >= 0,
*            ALPHA(K+1:K+L) = C,
*            BETA(K+1:K+L)  = S,
*          or if M-K-L < 0,
*            ALPHA(K+1:M)=C, ALPHA(M+1:K+L)=0
*            BETA(K+1:M) =S, BETA(M+1:K+L) =1
*          and
*            ALPHA(K+L+1:N) = 0
*            BETA(K+L+1:N)  = 0
*
*  U       (output) DOUBLE PRECISION array, dimension (LDU,M)
*          If JOBU = 'U', U contains the M-by-M orthogonal matrix U.
*          If JOBU = 'N', U is not referenced.
*
*  LDU     (input) INTEGER
*          The leading dimension of the array U. LDU >= max(1,M) if
*          JOBU = 'U'; LDU >= 1 otherwise.
*
*  V       (output) DOUBLE PRECISION array, dimension (LDV,P)
*          If JOBV = 'V', V contains the P-by-P orthogonal matrix V.
*          If JOBV = 'N', V is not referenced.
*
*  LDV     (input) INTEGER
*          The leading dimension of the array V. LDV >= max(1,P) if
*          JOBV = 'V'; LDV >= 1 otherwise.
*
*  Q       (output) DOUBLE PRECISION array, dimension (LDQ,N)
*          If JOBQ = 'Q', Q contains the N-by-N orthogonal matrix Q.
*          If JOBQ = 'N', Q is not referenced.
*
*  LDQ     (input) INTEGER
*          The leading dimension of the array Q. LDQ >= max(1,N) if
*          JOBQ = 'Q'; LDQ >= 1 otherwise.
*
*  WORK    (workspace) DOUBLE PRECISION array,
*                      dimension (max(3*N,M,P)+N)
*
*  IWORK   (workspace/output) INTEGER array, dimension (N)
*          On exit, IWORK stores the sorting information. More
*          precisely, the following loop will sort ALPHA
*             for I = K+1, min(M,K+L)
*                 swap ALPHA(I) and ALPHA(IWORK(I))
*             endfor
*          such that ALPHA(1) >= ALPHA(2) >= ... >= ALPHA(N).
*
*  INFO    (output) INTEGER
*          = 0:  successful exit
*          < 0:  if INFO = -i, the i-th argument had an illegal value.
*          > 0:  if INFO = 1, the Jacobi-type procedure failed to
*                converge.  For further details, see subroutine DTGSJA.
*
*  Internal Parameters
*  ===================
*
*  TOLA    DOUBLE PRECISION
*  TOLB    DOUBLE PRECISION
*          TOLA and TOLB are the thresholds to determine the effective
*          rank of (A',B')**T. Generally, they are set to
*                   TOLA = MAX(M,N)*norm(A)*MAZHEPS,
*                   TOLB = MAX(P,N)*norm(B)*MAZHEPS.
*          The size of TOLA and TOLB may affect the size of backward
*          errors of the decomposition.
*
*  Further Details
*  ===============
*
*  2-96 Based on modifications by
*     Ming Gu and Huan Ren, Computer Science Division, University of
*     California at Berkeley, USA
*
*  =====================================================================
*
*     .. Local Scalars ..
      LOGICAL            WANTQ, WANTU, WANTV
      INTEGER            I, IBND, ISUB, J, NCYCLE
      DOUBLE PRECISION   ANORM, BNORM, SMAX, TEMP, TOLA, TOLB, ULP, UNFL
*     ..
*     .. External Functions ..
      LOGICAL            LSAME
      DOUBLE PRECISION   DLAMCH, DLANGE
      EXTERNAL           LSAME, DLAMCH, DLANGE
*     ..
*     .. External Subroutines ..
      EXTERNAL           DCOPY, DGGSVP, DTGSJA, XERBLA
*     ..
*     .. Intrinsic Functions ..
      INTRINSIC          MAXMIN
*     ..
*     .. Executable Statements ..
*
*     Test the input parameters
*
      WANTU = LSAME( JOBU, 'U' )
      WANTV = LSAME( JOBV, 'V' )
      WANTQ = LSAME( JOBQ, 'Q' )
*
      INFO = 0
      IF.NOT.( WANTU .OR. LSAME( JOBU, 'N' ) ) ) THEN
         INFO = -1
      ELSE IF.NOT.( WANTV .OR. LSAME( JOBV, 'N' ) ) ) THEN
         INFO = -2
      ELSE IF.NOT.( WANTQ .OR. LSAME( JOBQ, 'N' ) ) ) THEN
         INFO = -3
      ELSE IF( M.LT.0 ) THEN
         INFO = -4
      ELSE IF( N.LT.0 ) THEN
         INFO = -5
      ELSE IF( P.LT.0 ) THEN
         INFO = -6
      ELSE IF( LDA.LT.MAX1, M ) ) THEN
         INFO = -10
      ELSE IF( LDB.LT.MAX1, P ) ) THEN
         INFO = -12
      ELSE IF( LDU.LT.1 .OR. ( WANTU .AND. LDU.LT.M ) ) THEN
         INFO = -16
      ELSE IF( LDV.LT.1 .OR. ( WANTV .AND. LDV.LT.P ) ) THEN
         INFO = -18
      ELSE IF( LDQ.LT.1 .OR. ( WANTQ .AND. LDQ.LT.N ) ) THEN
         INFO = -20
      END IF
      IF( INFO.NE.0 ) THEN
         CALL XERBLA( 'DGGSVD'-INFO )
         RETURN
      END IF
*
*     Compute the Frobenius norm of matrices A and B
*
      ANORM = DLANGE( '1', M, N, A, LDA, WORK )
      BNORM = DLANGE( '1', P, N, B, LDB, WORK )
*
*     Get machine precision and set up threshold for determining
*     the effective numerical rank of the matrices A and B.
*
      ULP = DLAMCH( 'Precision' )
      UNFL = DLAMCH( 'Safe Minimum' )
      TOLA = MAX( M, N )*MAX( ANORM, UNFL )*ULP
      TOLB = MAX( P, N )*MAX( BNORM, UNFL )*ULP
*
*     Preprocessing
*
      CALL DGGSVP( JOBU, JOBV, JOBQ, M, P, N, A, LDA, B, LDB, TOLA,
     $             TOLB, K, L, U, LDU, V, LDV, Q, LDQ, IWORK, WORK,
     $             WORK( N+1 ), INFO )
*
*     Compute the GSVD of two upper "triangular" matrices
*
      CALL DTGSJA( JOBU, JOBV, JOBQ, M, P, N, K, L, A, LDA, B, LDB,
     $             TOLA, TOLB, ALPHA, BETA, U, LDU, V, LDV, Q, LDQ,
     $             WORK, NCYCLE, INFO )
*
*     Sort the singular values and store the pivot indices in IWORK
*     Copy ALPHA to WORK, then sort ALPHA in WORK
*
      CALL DCOPY( N, ALPHA, 1, WORK, 1 )
      IBND = MIN( L, M-K )
      DO 20 I = 1, IBND
*
*        Scan for largest ALPHA(K+I)
*
         ISUB = I
         SMAX = WORK( K+I )
         DO 10 J = I + 1, IBND
            TEMP = WORK( K+J )
            IF( TEMP.GT.SMAX ) THEN
               ISUB = J
               SMAX = TEMP
            END IF
   10    CONTINUE
         IF( ISUB.NE.I ) THEN
            WORK( K+ISUB ) = WORK( K+I )
            WORK( K+I ) = SMAX
            IWORK( K+I ) = K + ISUB
         ELSE
            IWORK( K+I ) = K + I
         END IF
   20 CONTINUE
*
      RETURN
*
*     End of DGGSVD
*
      END