1
       2
       3
       4
       5
       6
       7
       8
       9
      10
      11
      12
      13
      14
      15
      16
      17
      18
      19
      20
      21
      22
      23
      24
      25
      26
      27
      28
      29
      30
      31
      32
      33
      34
      35
      36
      37
      38
      39
      40
      41
      42
      43
      44
      45
      46
      47
      48
      49
      50
      51
      52
      53
      54
      55
      56
      57
      58
      59
      60
      61
      62
      63
      64
      65
      66
      67
      68
      69
      70
      71
      72
      73
      74
      75
      76
      77
      78
      79
      80
      81
      82
      83
      84
      85
      86
      87
      88
      89
      90
      91
      92
      93
      94
      95
      96
      97
      98
      99
     100
     101
     102
     103
     104
     105
     106
     107
     108
     109
     110
     111
     112
     113
     114
     115
     116
     117
     118
     119
     120
     121
     122
     123
     124
     125
     126
     127
     128
     129
     130
     131
     132
     133
     134
     135
     136
     137
     138
     139
     140
     141
     142
     143
     144
     145
     146
     147
     148
     149
     150
     151
     152
     153
     154
     155
     156
     157
     158
     159
     160
     161
     162
     163
     164
     165
     166
     167
     168
     169
     170
     171
     172
     173
     174
     175
     176
     177
     178
     179
     180
     181
     182
     183
     184
     185
     186
     187
     188
     189
     190
     191
     192
     193
     194
     195
     196
     197
     198
     199
     200
     201
     202
     203
     204
     205
     206
     207
     208
     209
     210
     211
     212
     213
     214
     215
     216
     217
     218
     219
     220
     221
     222
     223
     224
     225
     226
     227
     228
     229
     230
     231
     232
     233
     234
     235
     236
     237
     238
     239
     240
     241
     242
     243
     244
     245
     246
     247
     248
     249
     250
     251
     252
     253
     254
     255
     256
     257
     258
     259
     260
     261
     262
     263
     264
     265
     266
     267
     268
     269
     270
     271
     272
     273
     274
     275
     276
     277
     278
     279
     280
     281
     282
     283
     284
     285
     286
     287
     288
     289
     290
     291
     292
     293
     294
     295
     296
     297
     298
     299
     300
     301
     302
     303
     304
     305
     306
     307
     308
     309
     310
     311
     312
     313
     314
     315
     316
     317
     318
     319
     320
     321
     322
     323
     324
     325
     326
     327
     328
     329
     330
     331
     332
     333
     334
     335
     336
     337
     338
     339
     340
     341
     342
     343
     344
     345
     346
     347
     348
     349
     350
     351
     352
     353
     354
     355
     356
     357
     358
     359
     360
     361
     362
     363
     364
     365
     366
     367
     368
     369
     370
     371
     372
     373
     374
     375
     376
     377
     378
     379
     380
     381
     382
     383
     384
     385
     386
     387
     388
     389
     390
     391
     392
     393
     394
     395
     396
     397
     398
     399
     400
     401
     402
     403
     404
     405
     406
     407
     408
     409
     410
     411
     412
     413
     414
     415
     416
     417
     418
     419
     420
     421
     422
     423
     424
     425
     426
     427
     428
     429
     430
     431
     432
     433
     434
     435
      SUBROUTINE DLAED2( K, N, N1, D, Q, LDQ, INDXQ, RHO, Z, DLAMDA, W,
     $                   Q2, INDX, INDXC, INDXP, COLTYP, INFO )
*
*  -- LAPACK routine (version 3.2) --
*  -- LAPACK is a software package provided by Univ. of Tennessee,    --
*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
*     November 2006
*
*     .. Scalar Arguments ..
      INTEGER            INFO, K, LDQ, N, N1
      DOUBLE PRECISION   RHO
*     ..
*     .. Array Arguments ..
      INTEGER            COLTYP( * ), INDX( * ), INDXC( * ), INDXP( * ),
     $                   INDXQ( * )
      DOUBLE PRECISION   D( * ), DLAMDA( * ), Q( LDQ, * ), Q2( * ),
     $                   W( * ), Z( * )
*     ..
*
*  Purpose
*  =======
*
*  DLAED2 merges the two sets of eigenvalues together into a single
*  sorted set.  Then it tries to deflate the size of the problem.
*  There are two ways in which deflation can occur:  when two or more
*  eigenvalues are close together or if there is a tiny entry in the
*  Z vector.  For each such occurrence the order of the related secular
*  equation problem is reduced by one.
*
*  Arguments
*  =========
*
*  K      (output) INTEGER
*         The number of non-deflated eigenvalues, and the order of the
*         related secular equation. 0 <= K <=N.
*
*  N      (input) INTEGER
*         The dimension of the symmetric tridiagonal matrix.  N >= 0.
*
*  N1     (input) INTEGER
*         The location of the last eigenvalue in the leading sub-matrix.
*         min(1,N) <= N1 <= N/2.
*
*  D      (input/output) DOUBLE PRECISION array, dimension (N)
*         On entry, D contains the eigenvalues of the two submatrices to
*         be combined.
*         On exit, D contains the trailing (N-K) updated eigenvalues
*         (those which were deflated) sorted into increasing order.
*
*  Q      (input/output) DOUBLE PRECISION array, dimension (LDQ, N)
*         On entry, Q contains the eigenvectors of two submatrices in
*         the two square blocks with corners at (1,1), (N1,N1)
*         and (N1+1, N1+1), (N,N).
*         On exit, Q contains the trailing (N-K) updated eigenvectors
*         (those which were deflated) in its last N-K columns.
*
*  LDQ    (input) INTEGER
*         The leading dimension of the array Q.  LDQ >= max(1,N).
*
*  INDXQ  (input/output) INTEGER array, dimension (N)
*         The permutation which separately sorts the two sub-problems
*         in D into ascending order.  Note that elements in the second
*         half of this permutation must first have N1 added to their
*         values. Destroyed on exit.
*
*  RHO    (input/output) DOUBLE PRECISION
*         On entry, the off-diagonal element associated with the rank-1
*         cut which originally split the two submatrices which are now
*         being recombined.
*         On exit, RHO has been modified to the value required by
*         DLAED3.
*
*  Z      (input) DOUBLE PRECISION array, dimension (N)
*         On entry, Z contains the updating vector (the last
*         row of the first sub-eigenvector matrix and the first row of
*         the second sub-eigenvector matrix).
*         On exit, the contents of Z have been destroyed by the updating
*         process.
*
*  DLAMDA (output) DOUBLE PRECISION array, dimension (N)
*         A copy of the first K eigenvalues which will be used by
*         DLAED3 to form the secular equation.
*
*  W      (output) DOUBLE PRECISION array, dimension (N)
*         The first k values of the final deflation-altered z-vector
*         which will be passed to DLAED3.
*
*  Q2     (output) DOUBLE PRECISION array, dimension (N1**2+(N-N1)**2)
*         A copy of the first K eigenvectors which will be used by
*         DLAED3 in a matrix multiply (DGEMM) to solve for the new
*         eigenvectors.
*
*  INDX   (workspace) INTEGER array, dimension (N)
*         The permutation used to sort the contents of DLAMDA into
*         ascending order.
*
*  INDXC  (output) INTEGER array, dimension (N)
*         The permutation used to arrange the columns of the deflated
*         Q matrix into three groups:  the first group contains non-zero
*         elements only at and above N1, the second contains
*         non-zero elements only below N1, and the third is dense.
*
*  INDXP  (workspace) INTEGER array, dimension (N)
*         The permutation used to place deflated values of D at the end
*         of the array.  INDXP(1:K) points to the nondeflated D-values
*         and INDXP(K+1:N) points to the deflated eigenvalues.
*
*  COLTYP (workspace/output) INTEGER array, dimension (N)
*         During execution, a label which will indicate which of the
*         following types a column in the Q2 matrix is:
*         1 : non-zero in the upper half only;
*         2 : dense;
*         3 : non-zero in the lower half only;
*         4 : deflated.
*         On exit, COLTYP(i) is the number of columns of type i,
*         for i=1 to 4 only.
*
*  INFO   (output) INTEGER
*          = 0:  successful exit.
*          < 0:  if INFO = -i, the i-th argument had an illegal value.
*
*  Further Details
*  ===============
*
*  Based on contributions by
*     Jeff Rutter, Computer Science Division, University of California
*     at Berkeley, USA
*  Modified by Francoise Tisseur, University of Tennessee.
*
*  =====================================================================
*
*     .. Parameters ..
      DOUBLE PRECISION   MONE, ZERO, ONE, TWO, EIGHT
      PARAMETER          ( MONE = -1.0D0, ZERO = 0.0D0, ONE = 1.0D0,
     $                   TWO = 2.0D0, EIGHT = 8.0D0 )
*     ..
*     .. Local Arrays ..
      INTEGER            CTOT( 4 ), PSM( 4 )
*     ..
*     .. Local Scalars ..
      INTEGER            CT, I, IMAX, IQ1, IQ2, J, JMAX, JS, K2, N1P1,
     $                   N2, NJ, PJ
      DOUBLE PRECISION   C, EPS, S, T, TAU, TOL
*     ..
*     .. External Functions ..
      INTEGER            IDAMAX
      DOUBLE PRECISION   DLAMCH, DLAPY2
      EXTERNAL           IDAMAX, DLAMCH, DLAPY2
*     ..
*     .. External Subroutines ..
      EXTERNAL           DCOPY, DLACPY, DLAMRG, DROT, DSCAL, XERBLA
*     ..
*     .. Intrinsic Functions ..
      INTRINSIC          ABSMAXMINSQRT
*     ..
*     .. Executable Statements ..
*
*     Test the input parameters.
*
      INFO = 0
*
      IF( N.LT.0 ) THEN
         INFO = -2
      ELSE IF( LDQ.LT.MAX1, N ) ) THEN
         INFO = -6
      ELSE IFMIN1, ( N / 2 ) ).GT.N1 .OR. ( N / 2 ).LT.N1 ) THEN
         INFO = -3
      END IF
      IF( INFO.NE.0 ) THEN
         CALL XERBLA( 'DLAED2'-INFO )
         RETURN
      END IF
*
*     Quick return if possible
*
      IF( N.EQ.0 )
     $   RETURN
*
      N2 = N - N1
      N1P1 = N1 + 1
*
      IF( RHO.LT.ZERO ) THEN
         CALL DSCAL( N2, MONE, Z( N1P1 ), 1 )
      END IF
*
*     Normalize z so that norm(z) = 1.  Since z is the concatenation of
*     two normalized vectors, norm2(z) = sqrt(2).
*
      T = ONE / SQRT( TWO )
      CALL DSCAL( N, T, Z, 1 )
*
*     RHO = ABS( norm(z)**2 * RHO )
*
      RHO = ABS( TWO*RHO )
*
*     Sort the eigenvalues into increasing order
*
      DO 10 I = N1P1, N
         INDXQ( I ) = INDXQ( I ) + N1
   10 CONTINUE
*
*     re-integrate the deflated parts from the last pass
*
      DO 20 I = 1, N
         DLAMDA( I ) = D( INDXQ( I ) )
   20 CONTINUE
      CALL DLAMRG( N1, N2, DLAMDA, 11, INDXC )
      DO 30 I = 1, N
         INDX( I ) = INDXQ( INDXC( I ) )
   30 CONTINUE
*
*     Calculate the allowable deflation tolerance
*
      IMAX = IDAMAX( N, Z, 1 )
      JMAX = IDAMAX( N, D, 1 )
      EPS = DLAMCH( 'Epsilon' )
      TOL = EIGHT*EPS*MAXABS( D( JMAX ) ), ABS( Z( IMAX ) ) )
*
*     If the rank-1 modifier is small enough, no more needs to be done
*     except to reorganize Q so that its columns correspond with the
*     elements in D.
*
      IF( RHO*ABS( Z( IMAX ) ).LE.TOL ) THEN
         K = 0
         IQ2 = 1
         DO 40 J = 1, N
            I = INDX( J )
            CALL DCOPY( N, Q( 1, I ), 1, Q2( IQ2 ), 1 )
            DLAMDA( J ) = D( I )
            IQ2 = IQ2 + N
   40    CONTINUE
         CALL DLACPY( 'A', N, N, Q2, N, Q, LDQ )
         CALL DCOPY( N, DLAMDA, 1, D, 1 )
         GO TO 190
      END IF
*
*     If there are multiple eigenvalues then the problem deflates.  Here
*     the number of equal eigenvalues are found.  As each equal
*     eigenvalue is found, an elementary reflector is computed to rotate
*     the corresponding eigensubspace so that the corresponding
*     components of Z are zero in this new basis.
*
      DO 50 I = 1, N1
         COLTYP( I ) = 1
   50 CONTINUE
      DO 60 I = N1P1, N
         COLTYP( I ) = 3
   60 CONTINUE
*
*
      K = 0
      K2 = N + 1
      DO 70 J = 1, N
         NJ = INDX( J )
         IF( RHO*ABS( Z( NJ ) ).LE.TOL ) THEN
*
*           Deflate due to small z component.
*
            K2 = K2 - 1
            COLTYP( NJ ) = 4
            INDXP( K2 ) = NJ
            IF( J.EQ.N )
     $         GO TO 100
         ELSE
            PJ = NJ
            GO TO 80
         END IF
   70 CONTINUE
   80 CONTINUE
      J = J + 1
      NJ = INDX( J )
      IF( J.GT.N )
     $   GO TO 100
      IF( RHO*ABS( Z( NJ ) ).LE.TOL ) THEN
*
*        Deflate due to small z component.
*
         K2 = K2 - 1
         COLTYP( NJ ) = 4
         INDXP( K2 ) = NJ
      ELSE
*
*        Check if eigenvalues are close enough to allow deflation.
*
         S = Z( PJ )
         C = Z( NJ )
*
*        Find sqrt(a**2+b**2) without overflow or
*        destructive underflow.
*
         TAU = DLAPY2( C, S )
         T = D( NJ ) - D( PJ )
         C = C / TAU
         S = -/ TAU
         IFABS( T*C*S ).LE.TOL ) THEN
*
*           Deflation is possible.
*
            Z( NJ ) = TAU
            Z( PJ ) = ZERO
            IF( COLTYP( NJ ).NE.COLTYP( PJ ) )
     $         COLTYP( NJ ) = 2
            COLTYP( PJ ) = 4
            CALL DROT( N, Q( 1, PJ ), 1, Q( 1, NJ ), 1, C, S )
            T = D( PJ )*C**2 + D( NJ )*S**2
            D( NJ ) = D( PJ )*S**2 + D( NJ )*C**2
            D( PJ ) = T
            K2 = K2 - 1
            I = 1
   90       CONTINUE
            IF( K2+I.LE.N ) THEN
               IF( D( PJ ).LT.D( INDXP( K2+I ) ) ) THEN
                  INDXP( K2+I-1 ) = INDXP( K2+I )
                  INDXP( K2+I ) = PJ
                  I = I + 1
                  GO TO 90
               ELSE
                  INDXP( K2+I-1 ) = PJ
               END IF
            ELSE
               INDXP( K2+I-1 ) = PJ
            END IF
            PJ = NJ
         ELSE
            K = K + 1
            DLAMDA( K ) = D( PJ )
            W( K ) = Z( PJ )
            INDXP( K ) = PJ
            PJ = NJ
         END IF
      END IF
      GO TO 80
  100 CONTINUE
*
*     Record the last eigenvalue.
*
      K = K + 1
      DLAMDA( K ) = D( PJ )
      W( K ) = Z( PJ )
      INDXP( K ) = PJ
*
*     Count up the total number of the various types of columns, then
*     form a permutation which positions the four column types into
*     four uniform groups (although one or more of these groups may be
*     empty).
*
      DO 110 J = 14
         CTOT( J ) = 0
  110 CONTINUE
      DO 120 J = 1, N
         CT = COLTYP( J )
         CTOT( CT ) = CTOT( CT ) + 1
  120 CONTINUE
*
*     PSM(*) = Position in SubMatrix (of types 1 through 4)
*
      PSM( 1 ) = 1
      PSM( 2 ) = 1 + CTOT( 1 )
      PSM( 3 ) = PSM( 2 ) + CTOT( 2 )
      PSM( 4 ) = PSM( 3 ) + CTOT( 3 )
      K = N - CTOT( 4 )
*
*     Fill out the INDXC array so that the permutation which it induces
*     will place all type-1 columns first, all type-2 columns next,
*     then all type-3's, and finally all type-4's.
*
      DO 130 J = 1, N
         JS = INDXP( J )
         CT = COLTYP( JS )
         INDX( PSM( CT ) ) = JS
         INDXC( PSM( CT ) ) = J
         PSM( CT ) = PSM( CT ) + 1
  130 CONTINUE
*
*     Sort the eigenvalues and corresponding eigenvectors into DLAMDA
*     and Q2 respectively.  The eigenvalues/vectors which were not
*     deflated go into the first K slots of DLAMDA and Q2 respectively,
*     while those which were deflated go into the last N - K slots.
*
      I = 1
      IQ1 = 1
      IQ2 = 1 + ( CTOT( 1 )+CTOT( 2 ) )*N1
      DO 140 J = 1, CTOT( 1 )
         JS = INDX( I )
         CALL DCOPY( N1, Q( 1, JS ), 1, Q2( IQ1 ), 1 )
         Z( I ) = D( JS )
         I = I + 1
         IQ1 = IQ1 + N1
  140 CONTINUE
*
      DO 150 J = 1, CTOT( 2 )
         JS = INDX( I )
         CALL DCOPY( N1, Q( 1, JS ), 1, Q2( IQ1 ), 1 )
         CALL DCOPY( N2, Q( N1+1, JS ), 1, Q2( IQ2 ), 1 )
         Z( I ) = D( JS )
         I = I + 1
         IQ1 = IQ1 + N1
         IQ2 = IQ2 + N2
  150 CONTINUE
*
      DO 160 J = 1, CTOT( 3 )
         JS = INDX( I )
         CALL DCOPY( N2, Q( N1+1, JS ), 1, Q2( IQ2 ), 1 )
         Z( I ) = D( JS )
         I = I + 1
         IQ2 = IQ2 + N2
  160 CONTINUE
*
      IQ1 = IQ2
      DO 170 J = 1, CTOT( 4 )
         JS = INDX( I )
         CALL DCOPY( N, Q( 1, JS ), 1, Q2( IQ2 ), 1 )
         IQ2 = IQ2 + N
         Z( I ) = D( JS )
         I = I + 1
  170 CONTINUE
*
*     The deflated eigenvalues and their corresponding vectors go back
*     into the last N - K slots of D and Q respectively.
*
      CALL DLACPY( 'A', N, CTOT( 4 ), Q2( IQ1 ), N, Q( 1, K+1 ), LDQ )
      CALL DCOPY( N-K, Z( K+1 ), 1, D( K+1 ), 1 )
*
*     Copy CTOT into COLTYP for referencing in DLAED3.
*
      DO 180 J = 14
         COLTYP( J ) = CTOT( J )
  180 CONTINUE
*
  190 CONTINUE
      RETURN
*
*     End of DLAED2
*
      END