1
       2
       3
       4
       5
       6
       7
       8
       9
      10
      11
      12
      13
      14
      15
      16
      17
      18
      19
      20
      21
      22
      23
      24
      25
      26
      27
      28
      29
      30
      31
      32
      33
      34
      35
      36
      37
      38
      39
      40
      41
      42
      43
      44
      45
      46
      47
      48
      49
      50
      51
      52
      53
      54
      55
      56
      57
      58
      59
      60
      61
      62
      63
      64
      65
      66
      67
      68
      69
      70
      71
      72
      73
      74
      75
      76
      77
      78
      79
      80
      81
      82
      83
      84
      85
      86
      87
      88
      89
      90
      91
      92
      93
      94
      95
      96
      97
      98
      99
     100
     101
     102
     103
     104
     105
     106
     107
     108
     109
     110
     111
     112
     113
     114
     115
     116
     117
     118
     119
     120
     121
     122
     123
     124
     125
     126
     127
     128
     129
     130
     131
     132
     133
     134
     135
     136
     137
     138
     139
     140
     141
     142
     143
     144
     145
     146
     147
     148
     149
     150
     151
     152
     153
     154
     155
     156
     157
     158
     159
     160
     161
     162
     163
     164
     165
     166
     167
     168
     169
     170
     171
     172
     173
     174
     175
     176
     177
     178
     179
     180
     181
     182
     183
     184
     185
     186
     187
     188
     189
     190
     191
     192
     193
     194
     195
     196
     197
     198
     199
     200
     201
     202
     203
     204
     205
     206
     207
     208
     209
     210
     211
     212
     213
     214
     215
     216
     217
     218
     219
     220
     221
     222
     223
     224
     225
     226
     227
     228
     229
     230
     231
     232
     233
     234
     235
     236
     237
     238
     239
     240
     241
     242
     243
     244
     245
     246
     247
     248
     249
     250
     251
     252
     253
     254
     255
     256
     257
     258
     259
     260
     261
     262
     263
     264
     265
     266
     267
     268
     269
     270
     271
     272
     273
     274
     275
     276
     277
     278
     279
     280
     281
     282
     283
     284
     285
     286
     287
     288
     289
     290
     291
     292
     293
     294
     295
     296
     297
     298
     299
     300
     301
     302
     303
     304
     305
     306
     307
     308
     309
     310
     311
     312
     313
     314
     315
     316
     317
     318
     319
     320
     321
     322
     323
     324
     325
     326
     327
     328
     329
     330
     331
     332
     333
     334
     335
     336
     337
     338
     339
     340
     341
     342
     343
     344
     345
     346
     347
     348
     349
     350
     351
     352
     353
     354
     355
     356
     357
     358
     359
     360
     361
     362
     363
     364
     365
     366
     367
     368
     369
     370
     371
     372
     373
     374
     375
     376
     377
     378
     379
     380
     381
     382
     383
     384
     385
     386
     387
     388
     389
     390
     391
     392
     393
     394
     395
     396
     397
     398
     399
     400
     401
     402
     403
     404
     405
     406
     407
     408
     409
     410
     411
     412
     413
     414
     415
     416
     417
     418
     419
     420
     421
     422
     423
     424
     425
     426
     427
     428
     429
     430
     431
     432
     433
     434
     435
     436
     437
     438
     439
     440
     441
     442
     443
     444
     445
     446
     447
     448
     449
     450
     451
     452
     453
     454
     455
     456
     457
     458
     459
     460
     461
     462
     463
     464
     465
     466
     467
     468
     469
     470
     471
     472
     473
     474
     475
     476
     477
     478
     479
     480
     481
     482
     483
     484
     485
     486
     487
     488
     489
     490
     491
     492
     493
     494
     495
     496
     497
     498
     499
     500
     501
     502
     503
     504
     505
     506
     507
     508
     509
     510
     511
     512
     513
     514
     515
     516
     517
     518
     519
     520
     521
     522
     523
     524
     525
     526
     527
     528
     529
     530
     531
     532
      SUBROUTINE DLAEIN( RIGHTV, NOINIT, N, H, LDH, WR, WI, VR, VI, B,
     $                   LDB, WORK, EPS3, SMLNUM, BIGNUM, INFO )
*
*  -- LAPACK auxiliary routine (version 3.3.1) --
*  -- LAPACK is a software package provided by Univ. of Tennessee,    --
*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
*  -- April 2011                                                      --
*
*     .. Scalar Arguments ..
      LOGICAL            NOINIT, RIGHTV
      INTEGER            INFO, LDB, LDH, N
      DOUBLE PRECISION   BIGNUM, EPS3, SMLNUM, WI, WR
*     ..
*     .. Array Arguments ..
      DOUBLE PRECISION   B( LDB, * ), H( LDH, * ), VI( * ), VR( * ),
     $                   WORK( * )
*     ..
*
*  Purpose
*  =======
*
*  DLAEIN uses inverse iteration to find a right or left eigenvector
*  corresponding to the eigenvalue (WR,WI) of a real upper Hessenberg
*  matrix H.
*
*  Arguments
*  =========
*
*  RIGHTV  (input) LOGICAL
*          = .TRUE. : compute right eigenvector;
*          = .FALSE.: compute left eigenvector.
*
*  NOINIT  (input) LOGICAL
*          = .TRUE. : no initial vector supplied in (VR,VI).
*          = .FALSE.: initial vector supplied in (VR,VI).
*
*  N       (input) INTEGER
*          The order of the matrix H.  N >= 0.
*
*  H       (input) DOUBLE PRECISION array, dimension (LDH,N)
*          The upper Hessenberg matrix H.
*
*  LDH     (input) INTEGER
*          The leading dimension of the array H.  LDH >= max(1,N).
*
*  WR      (input) DOUBLE PRECISION
*  WI      (input) DOUBLE PRECISION
*          The real and imaginary parts of the eigenvalue of H whose
*          corresponding right or left eigenvector is to be computed.
*
*  VR      (input/output) DOUBLE PRECISION array, dimension (N)
*  VI      (input/output) DOUBLE PRECISION array, dimension (N)
*          On entry, if NOINIT = .FALSE. and WI = 0.0, VR must contain
*          a real starting vector for inverse iteration using the real
*          eigenvalue WR; if NOINIT = .FALSE. and WI.ne.0.0, VR and VI
*          must contain the real and imaginary parts of a complex
*          starting vector for inverse iteration using the complex
*          eigenvalue (WR,WI); otherwise VR and VI need not be set.
*          On exit, if WI = 0.0 (real eigenvalue), VR contains the
*          computed real eigenvector; if WI.ne.0.0 (complex eigenvalue),
*          VR and VI contain the real and imaginary parts of the
*          computed complex eigenvector. The eigenvector is normalized
*          so that the component of largest magnitude has magnitude 1;
*          here the magnitude of a complex number (x,y) is taken to be
*          |x| + |y|.
*          VI is not referenced if WI = 0.0.
*
*  B       (workspace) DOUBLE PRECISION array, dimension (LDB,N)
*
*  LDB     (input) INTEGER
*          The leading dimension of the array B.  LDB >= N+1.
*
*  WORK    (workspace) DOUBLE PRECISION array, dimension (N)
*
*  EPS3    (input) DOUBLE PRECISION
*          A small machine-dependent value which is used to perturb
*          close eigenvalues, and to replace zero pivots.
*
*  SMLNUM  (input) DOUBLE PRECISION
*          A machine-dependent value close to the underflow threshold.
*
*  BIGNUM  (input) DOUBLE PRECISION
*          A machine-dependent value close to the overflow threshold.
*
*  INFO    (output) INTEGER
*          = 0:  successful exit
*          = 1:  inverse iteration did not converge; VR is set to the
*                last iterate, and so is VI if WI.ne.0.0.
*
*  =====================================================================
*
*     .. Parameters ..
      DOUBLE PRECISION   ZERO, ONE, TENTH
      PARAMETER          ( ZERO = 0.0D+0, ONE = 1.0D+0, TENTH = 1.0D-1 )
*     ..
*     .. Local Scalars ..
      CHARACTER          NORMIN, TRANS
      INTEGER            I, I1, I2, I3, IERR, ITS, J
      DOUBLE PRECISION   ABSBII, ABSBJJ, EI, EJ, GROWTO, NORM, NRMSML,
     $                   REC, ROOTN, SCALE, TEMP, VCRIT, VMAX, VNORM, W,
     $                   W1, X, XI, XR, Y
*     ..
*     .. External Functions ..
      INTEGER            IDAMAX
      DOUBLE PRECISION   DASUM, DLAPY2, DNRM2
      EXTERNAL           IDAMAX, DASUM, DLAPY2, DNRM2
*     ..
*     .. External Subroutines ..
      EXTERNAL           DLADIV, DLATRS, DSCAL
*     ..
*     .. Intrinsic Functions ..
      INTRINSIC          ABSDBLEMAXSQRT
*     ..
*     .. Executable Statements ..
*
      INFO = 0
*
*     GROWTO is the threshold used in the acceptance test for an
*     eigenvector.
*
      ROOTN = SQRTDBLE( N ) )
      GROWTO = TENTH / ROOTN
      NRMSML = MAX( ONE, EPS3*ROOTN )*SMLNUM
*
*     Form B = H - (WR,WI)*I (except that the subdiagonal elements and
*     the imaginary parts of the diagonal elements are not stored).
*
      DO 20 J = 1, N
         DO 10 I = 1, J - 1
            B( I, J ) = H( I, J )
   10    CONTINUE
         B( J, J ) = H( J, J ) - WR
   20 CONTINUE
*
      IF( WI.EQ.ZERO ) THEN
*
*        Real eigenvalue.
*
         IF( NOINIT ) THEN
*
*           Set initial vector.
*
            DO 30 I = 1, N
               VR( I ) = EPS3
   30       CONTINUE
         ELSE
*
*           Scale supplied initial vector.
*
            VNORM = DNRM2( N, VR, 1 )
            CALL DSCAL( N, ( EPS3*ROOTN ) / MAX( VNORM, NRMSML ), VR,
     $                  1 )
         END IF
*
         IF( RIGHTV ) THEN
*
*           LU decomposition with partial pivoting of B, replacing zero
*           pivots by EPS3.
*
            DO 60 I = 1, N - 1
               EI = H( I+1, I )
               IFABS( B( I, I ) ).LT.ABS( EI ) ) THEN
*
*                 Interchange rows and eliminate.
*
                  X = B( I, I ) / EI
                  B( I, I ) = EI
                  DO 40 J = I + 1, N
                     TEMP = B( I+1, J )
                     B( I+1, J ) = B( I, J ) - X*TEMP
                     B( I, J ) = TEMP
   40             CONTINUE
               ELSE
*
*                 Eliminate without interchange.
*
                  IF( B( I, I ).EQ.ZERO )
     $               B( I, I ) = EPS3
                  X = EI / B( I, I )
                  IF( X.NE.ZERO ) THEN
                     DO 50 J = I + 1, N
                        B( I+1, J ) = B( I+1, J ) - X*B( I, J )
   50                CONTINUE
                  END IF
               END IF
   60       CONTINUE
            IF( B( N, N ).EQ.ZERO )
     $         B( N, N ) = EPS3
*
            TRANS = 'N'
*
         ELSE
*
*           UL decomposition with partial pivoting of B, replacing zero
*           pivots by EPS3.
*
            DO 90 J = N, 2-1
               EJ = H( J, J-1 )
               IFABS( B( J, J ) ).LT.ABS( EJ ) ) THEN
*
*                 Interchange columns and eliminate.
*
                  X = B( J, J ) / EJ
                  B( J, J ) = EJ
                  DO 70 I = 1, J - 1
                     TEMP = B( I, J-1 )
                     B( I, J-1 ) = B( I, J ) - X*TEMP
                     B( I, J ) = TEMP
   70             CONTINUE
               ELSE
*
*                 Eliminate without interchange.
*
                  IF( B( J, J ).EQ.ZERO )
     $               B( J, J ) = EPS3
                  X = EJ / B( J, J )
                  IF( X.NE.ZERO ) THEN
                     DO 80 I = 1, J - 1
                        B( I, J-1 ) = B( I, J-1 ) - X*B( I, J )
   80                CONTINUE
                  END IF
               END IF
   90       CONTINUE
            IF( B( 11 ).EQ.ZERO )
     $         B( 11 ) = EPS3
*
            TRANS = 'T'
*
         END IF
*
         NORMIN = 'N'
         DO 110 ITS = 1, N
*
*           Solve U*x = scale*v for a right eigenvector
*             or U**T*x = scale*v for a left eigenvector,
*           overwriting x on v.
*
            CALL DLATRS( 'Upper', TRANS, 'Nonunit', NORMIN, N, B, LDB,
     $                   VR, SCALE, WORK, IERR )
            NORMIN = 'Y'
*
*           Test for sufficient growth in the norm of v.
*
            VNORM = DASUM( N, VR, 1 )
            IF( VNORM.GE.GROWTO*SCALE )
     $         GO TO 120
*
*           Choose new orthogonal starting vector and try again.
*
            TEMP = EPS3 / ( ROOTN+ONE )
            VR( 1 ) = EPS3
            DO 100 I = 2, N
               VR( I ) = TEMP
  100       CONTINUE
            VR( N-ITS+1 ) = VR( N-ITS+1 ) - EPS3*ROOTN
  110    CONTINUE
*
*        Failure to find eigenvector in N iterations.
*
         INFO = 1
*
  120    CONTINUE
*
*        Normalize eigenvector.
*
         I = IDAMAX( N, VR, 1 )
         CALL DSCAL( N, ONE / ABS( VR( I ) ), VR, 1 )
      ELSE
*
*        Complex eigenvalue.
*
         IF( NOINIT ) THEN
*
*           Set initial vector.
*
            DO 130 I = 1, N
               VR( I ) = EPS3
               VI( I ) = ZERO
  130       CONTINUE
         ELSE
*
*           Scale supplied initial vector.
*
            NORM = DLAPY2( DNRM2( N, VR, 1 ), DNRM2( N, VI, 1 ) )
            REC = ( EPS3*ROOTN ) / MAX( NORM, NRMSML )
            CALL DSCAL( N, REC, VR, 1 )
            CALL DSCAL( N, REC, VI, 1 )
         END IF
*
         IF( RIGHTV ) THEN
*
*           LU decomposition with partial pivoting of B, replacing zero
*           pivots by EPS3.
*
*           The imaginary part of the (i,j)-th element of U is stored in
*           B(j+1,i).
*
            B( 21 ) = -WI
            DO 140 I = 2, N
               B( I+11 ) = ZERO
  140       CONTINUE
*
            DO 170 I = 1, N - 1
               ABSBII = DLAPY2( B( I, I ), B( I+1, I ) )
               EI = H( I+1, I )
               IF( ABSBII.LT.ABS( EI ) ) THEN
*
*                 Interchange rows and eliminate.
*
                  XR = B( I, I ) / EI
                  XI = B( I+1, I ) / EI
                  B( I, I ) = EI
                  B( I+1, I ) = ZERO
                  DO 150 J = I + 1, N
                     TEMP = B( I+1, J )
                     B( I+1, J ) = B( I, J ) - XR*TEMP
                     B( J+1, I+1 ) = B( J+1, I ) - XI*TEMP
                     B( I, J ) = TEMP
                     B( J+1, I ) = ZERO
  150             CONTINUE
                  B( I+2, I ) = -WI
                  B( I+1, I+1 ) = B( I+1, I+1 ) - XI*WI
                  B( I+2, I+1 ) = B( I+2, I+1 ) + XR*WI
               ELSE
*
*                 Eliminate without interchanging rows.
*
                  IF( ABSBII.EQ.ZERO ) THEN
                     B( I, I ) = EPS3
                     B( I+1, I ) = ZERO
                     ABSBII = EPS3
                  END IF
                  EI = ( EI / ABSBII ) / ABSBII
                  XR = B( I, I )*EI
                  XI = -B( I+1, I )*EI
                  DO 160 J = I + 1, N
                     B( I+1, J ) = B( I+1, J ) - XR*B( I, J ) +
     $                             XI*B( J+1, I )
                     B( J+1, I+1 ) = -XR*B( J+1, I ) - XI*B( I, J )
  160             CONTINUE
                  B( I+2, I+1 ) = B( I+2, I+1 ) - WI
               END IF
*
*              Compute 1-norm of offdiagonal elements of i-th row.
*
               WORK( I ) = DASUM( N-I, B( I, I+1 ), LDB ) +
     $                     DASUM( N-I, B( I+2, I ), 1 )
  170       CONTINUE
            IF( B( N, N ).EQ.ZERO .AND. B( N+1, N ).EQ.ZERO )
     $         B( N, N ) = EPS3
            WORK( N ) = ZERO
*
            I1 = N
            I2 = 1
            I3 = -1
         ELSE
*
*           UL decomposition with partial pivoting of conjg(B),
*           replacing zero pivots by EPS3.
*
*           The imaginary part of the (i,j)-th element of U is stored in
*           B(j+1,i).
*
            B( N+1, N ) = WI
            DO 180 J = 1, N - 1
               B( N+1, J ) = ZERO
  180       CONTINUE
*
            DO 210 J = N, 2-1
               EJ = H( J, J-1 )
               ABSBJJ = DLAPY2( B( J, J ), B( J+1, J ) )
               IF( ABSBJJ.LT.ABS( EJ ) ) THEN
*
*                 Interchange columns and eliminate
*
                  XR = B( J, J ) / EJ
                  XI = B( J+1, J ) / EJ
                  B( J, J ) = EJ
                  B( J+1, J ) = ZERO
                  DO 190 I = 1, J - 1
                     TEMP = B( I, J-1 )
                     B( I, J-1 ) = B( I, J ) - XR*TEMP
                     B( J, I ) = B( J+1, I ) - XI*TEMP
                     B( I, J ) = TEMP
                     B( J+1, I ) = ZERO
  190             CONTINUE
                  B( J+1, J-1 ) = WI
                  B( J-1, J-1 ) = B( J-1, J-1 ) + XI*WI
                  B( J, J-1 ) = B( J, J-1 ) - XR*WI
               ELSE
*
*                 Eliminate without interchange.
*
                  IF( ABSBJJ.EQ.ZERO ) THEN
                     B( J, J ) = EPS3
                     B( J+1, J ) = ZERO
                     ABSBJJ = EPS3
                  END IF
                  EJ = ( EJ / ABSBJJ ) / ABSBJJ
                  XR = B( J, J )*EJ
                  XI = -B( J+1, J )*EJ
                  DO 200 I = 1, J - 1
                     B( I, J-1 ) = B( I, J-1 ) - XR*B( I, J ) +
     $                             XI*B( J+1, I )
                     B( J, I ) = -XR*B( J+1, I ) - XI*B( I, J )
  200             CONTINUE
                  B( J, J-1 ) = B( J, J-1 ) + WI
               END IF
*
*              Compute 1-norm of offdiagonal elements of j-th column.
*
               WORK( J ) = DASUM( J-1, B( 1, J ), 1 ) +
     $                     DASUM( J-1, B( J+11 ), LDB )
  210       CONTINUE
            IF( B( 11 ).EQ.ZERO .AND. B( 21 ).EQ.ZERO )
     $         B( 11 ) = EPS3
            WORK( 1 ) = ZERO
*
            I1 = 1
            I2 = N
            I3 = 1
         END IF
*
         DO 270 ITS = 1, N
            SCALE = ONE
            VMAX = ONE
            VCRIT = BIGNUM
*
*           Solve U*(xr,xi) = scale*(vr,vi) for a right eigenvector,
*             or U**T*(xr,xi) = scale*(vr,vi) for a left eigenvector,
*           overwriting (xr,xi) on (vr,vi).
*
            DO 250 I = I1, I2, I3
*
               IF( WORK( I ).GT.VCRIT ) THEN
                  REC = ONE / VMAX
                  CALL DSCAL( N, REC, VR, 1 )
                  CALL DSCAL( N, REC, VI, 1 )
                  SCALE = SCALE*REC
                  VMAX = ONE
                  VCRIT = BIGNUM
               END IF
*
               XR = VR( I )
               XI = VI( I )
               IF( RIGHTV ) THEN
                  DO 220 J = I + 1, N
                     XR = XR - B( I, J )*VR( J ) + B( J+1, I )*VI( J )
                     XI = XI - B( I, J )*VI( J ) - B( J+1, I )*VR( J )
  220             CONTINUE
               ELSE
                  DO 230 J = 1, I - 1
                     XR = XR - B( J, I )*VR( J ) + B( I+1, J )*VI( J )
                     XI = XI - B( J, I )*VI( J ) - B( I+1, J )*VR( J )
  230             CONTINUE
               END IF
*
               W = ABS( B( I, I ) ) + ABS( B( I+1, I ) )
               IF( W.GT.SMLNUM ) THEN
                  IF( W.LT.ONE ) THEN
                     W1 = ABS( XR ) + ABS( XI )
                     IF( W1.GT.W*BIGNUM ) THEN
                        REC = ONE / W1
                        CALL DSCAL( N, REC, VR, 1 )
                        CALL DSCAL( N, REC, VI, 1 )
                        XR = VR( I )
                        XI = VI( I )
                        SCALE = SCALE*REC
                        VMAX = VMAX*REC
                     END IF
                  END IF
*
*                 Divide by diagonal element of B.
*
                  CALL DLADIV( XR, XI, B( I, I ), B( I+1, I ), VR( I ),
     $                         VI( I ) )
                  VMAX = MAXABS( VR( I ) )+ABS( VI( I ) ), VMAX )
                  VCRIT = BIGNUM / VMAX
               ELSE
                  DO 240 J = 1, N
                     VR( J ) = ZERO
                     VI( J ) = ZERO
  240             CONTINUE
                  VR( I ) = ONE
                  VI( I ) = ONE
                  SCALE = ZERO
                  VMAX = ONE
                  VCRIT = BIGNUM
               END IF
  250       CONTINUE
*
*           Test for sufficient growth in the norm of (VR,VI).
*
            VNORM = DASUM( N, VR, 1 ) + DASUM( N, VI, 1 )
            IF( VNORM.GE.GROWTO*SCALE )
     $         GO TO 280
*
*           Choose a new orthogonal starting vector and try again.
*
            Y = EPS3 / ( ROOTN+ONE )
            VR( 1 ) = EPS3
            VI( 1 ) = ZERO
*
            DO 260 I = 2, N
               VR( I ) = Y
               VI( I ) = ZERO
  260       CONTINUE
            VR( N-ITS+1 ) = VR( N-ITS+1 ) - EPS3*ROOTN
  270    CONTINUE
*
*        Failure to find eigenvector in N iterations
*
         INFO = 1
*
  280    CONTINUE
*
*        Normalize eigenvector.
*
         VNORM = ZERO
         DO 290 I = 1, N
            VNORM = MAX( VNORM, ABS( VR( I ) )+ABS( VI( I ) ) )
  290    CONTINUE
         CALL DSCAL( N, ONE / VNORM, VR, 1 )
         CALL DSCAL( N, ONE / VNORM, VI, 1 )
*
      END IF
*
      RETURN
*
*     End of DLAEIN
*
      END