1
       2
       3
       4
       5
       6
       7
       8
       9
      10
      11
      12
      13
      14
      15
      16
      17
      18
      19
      20
      21
      22
      23
      24
      25
      26
      27
      28
      29
      30
      31
      32
      33
      34
      35
      36
      37
      38
      39
      40
      41
      42
      43
      44
      45
      46
      47
      48
      49
      50
      51
      52
      53
      54
      55
      56
      57
      58
      59
      60
      61
      62
      63
      64
      65
      66
      67
      68
      69
      70
      71
      72
      73
      74
      75
      76
      77
      78
      79
      80
      81
      82
      83
      84
      85
      86
      87
      88
      89
      90
      91
      92
      93
      94
      95
      96
      97
      98
      99
     100
     101
     102
     103
     104
     105
     106
     107
     108
     109
     110
     111
     112
     113
     114
     115
     116
     117
     118
     119
     120
     121
     122
     123
     124
     125
     126
     127
     128
     129
     130
     131
     132
     133
     134
     135
     136
     137
     138
     139
     140
     141
     142
     143
     144
     145
     146
     147
     148
     149
     150
     151
     152
     153
     154
     155
     156
     157
     158
     159
     160
     161
     162
     163
     164
     165
     166
     167
     168
     169
     170
     171
     172
     173
     174
     175
     176
     177
     178
     179
     180
     181
     182
     183
     184
     185
     186
     187
     188
     189
     190
     191
      SUBROUTINE DLAGTF( N, A, LAMBDA, B, C, TOL, D, IN, INFO )
*
*  -- LAPACK routine (version 3.2) --
*  -- LAPACK is a software package provided by Univ. of Tennessee,    --
*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
*     November 2006
*
*     .. Scalar Arguments ..
      INTEGER            INFO, N
      DOUBLE PRECISION   LAMBDA, TOL
*     ..
*     .. Array Arguments ..
      INTEGER            IN* )
      DOUBLE PRECISION   A( * ), B( * ), C( * ), D( * )
*     ..
*
*  Purpose
*  =======
*
*  DLAGTF factorizes the matrix (T - lambda*I), where T is an n by n
*  tridiagonal matrix and lambda is a scalar, as
*
*     T - lambda*I = PLU,
*
*  where P is a permutation matrix, L is a unit lower tridiagonal matrix
*  with at most one non-zero sub-diagonal elements per column and U is
*  an upper triangular matrix with at most two non-zero super-diagonal
*  elements per column.
*
*  The factorization is obtained by Gaussian elimination with partial
*  pivoting and implicit row scaling.
*
*  The parameter LAMBDA is included in the routine so that DLAGTF may
*  be used, in conjunction with DLAGTS, to obtain eigenvectors of T by
*  inverse iteration.
*
*  Arguments
*  =========
*
*  N       (input) INTEGER
*          The order of the matrix T.
*
*  A       (input/output) DOUBLE PRECISION array, dimension (N)
*          On entry, A must contain the diagonal elements of T.
*
*          On exit, A is overwritten by the n diagonal elements of the
*          upper triangular matrix U of the factorization of T.
*
*  LAMBDA  (input) DOUBLE PRECISION
*          On entry, the scalar lambda.
*
*  B       (input/output) DOUBLE PRECISION array, dimension (N-1)
*          On entry, B must contain the (n-1) super-diagonal elements of
*          T.
*
*          On exit, B is overwritten by the (n-1) super-diagonal
*          elements of the matrix U of the factorization of T.
*
*  C       (input/output) DOUBLE PRECISION array, dimension (N-1)
*          On entry, C must contain the (n-1) sub-diagonal elements of
*          T.
*
*          On exit, C is overwritten by the (n-1) sub-diagonal elements
*          of the matrix L of the factorization of T.
*
*  TOL     (input) DOUBLE PRECISION
*          On entry, a relative tolerance used to indicate whether or
*          not the matrix (T - lambda*I) is nearly singular. TOL should
*          normally be chose as approximately the largest relative error
*          in the elements of T. For example, if the elements of T are
*          correct to about 4 significant figures, then TOL should be
*          set to about 5*10**(-4). If TOL is supplied as less than eps,
*          where eps is the relative machine precision, then the value
*          eps is used in place of TOL.
*
*  D       (output) DOUBLE PRECISION array, dimension (N-2)
*          On exit, D is overwritten by the (n-2) second super-diagonal
*          elements of the matrix U of the factorization of T.
*
*  IN      (output) INTEGER array, dimension (N)
*          On exit, IN contains details of the permutation matrix P. If
*          an interchange occurred at the kth step of the elimination,
*          then IN(k) = 1, otherwise IN(k) = 0. The element IN(n)
*          returns the smallest positive integer j such that
*
*             abs( u(j,j) ).le. norm( (T - lambda*I)(j) )*TOL,
*
*          where norm( A(j) ) denotes the sum of the absolute values of
*          the jth row of the matrix A. If no such j exists then IN(n)
*          is returned as zero. If IN(n) is returned as positive, then a
*          diagonal element of U is small, indicating that
*          (T - lambda*I) is singular or nearly singular,
*
*  INFO    (output) INTEGER
*          = 0   : successful exit
*          .lt. 0: if INFO = -k, the kth argument had an illegal value
*
* =====================================================================
*
*     .. Parameters ..
      DOUBLE PRECISION   ZERO
      PARAMETER          ( ZERO = 0.0D+0 )
*     ..
*     .. Local Scalars ..
      INTEGER            K
      DOUBLE PRECISION   EPS, MULT, PIV1, PIV2, SCALE1, SCALE2, TEMP, TL
*     ..
*     .. Intrinsic Functions ..
      INTRINSIC          ABSMAX
*     ..
*     .. External Functions ..
      DOUBLE PRECISION   DLAMCH
      EXTERNAL           DLAMCH
*     ..
*     .. External Subroutines ..
      EXTERNAL           XERBLA
*     ..
*     .. Executable Statements ..
*
      INFO = 0
      IF( N.LT.0 ) THEN
         INFO = -1
         CALL XERBLA( 'DLAGTF'-INFO )
         RETURN
      END IF
*
      IF( N.EQ.0 )
     $   RETURN
*
      A( 1 ) = A( 1 ) - LAMBDA
      IN( N ) = 0
      IF( N.EQ.1 ) THEN
         IF( A( 1 ).EQ.ZERO )
     $      IN1 ) = 1
         RETURN
      END IF
*
      EPS = DLAMCH( 'Epsilon' )
*
      TL = MAX( TOL, EPS )
      SCALE1 = ABS( A( 1 ) ) + ABS( B( 1 ) )
      DO 10 K = 1, N - 1
         A( K+1 ) = A( K+1 ) - LAMBDA
         SCALE2 = ABS( C( K ) ) + ABS( A( K+1 ) )
         IF( K.LT.( N-1 ) )
     $      SCALE2 = SCALE2 + ABS( B( K+1 ) )
         IF( A( K ).EQ.ZERO ) THEN
            PIV1 = ZERO
         ELSE
            PIV1 = ABS( A( K ) ) / SCALE1
         END IF
         IF( C( K ).EQ.ZERO ) THEN
            IN( K ) = 0
            PIV2 = ZERO
            SCALE1 = SCALE2
            IF( K.LT.( N-1 ) )
     $         D( K ) = ZERO
         ELSE
            PIV2 = ABS( C( K ) ) / SCALE2
            IF( PIV2.LE.PIV1 ) THEN
               IN( K ) = 0
               SCALE1 = SCALE2
               C( K ) = C( K ) / A( K )
               A( K+1 ) = A( K+1 ) - C( K )*B( K )
               IF( K.LT.( N-1 ) )
     $            D( K ) = ZERO
            ELSE
               IN( K ) = 1
               MULT = A( K ) / C( K )
               A( K ) = C( K )
               TEMP = A( K+1 )
               A( K+1 ) = B( K ) - MULT*TEMP
               IF( K.LT.( N-1 ) ) THEN
                  D( K ) = B( K+1 )
                  B( K+1 ) = -MULT*D( K )
               END IF
               B( K ) = TEMP
               C( K ) = MULT
            END IF
         END IF
         IF( ( MAX( PIV1, PIV2 ).LE.TL ) .AND. ( IN( N ).EQ.0 ) )
     $      IN( N ) = K
   10 CONTINUE
      IF( ( ABS( A( N ) ).LE.SCALE1*TL ) .AND. ( IN( N ).EQ.0 ) )
     $   IN( N ) = N
*
      RETURN
*
*     End of DLAGTF
*
      END