1
       2
       3
       4
       5
       6
       7
       8
       9
      10
      11
      12
      13
      14
      15
      16
      17
      18
      19
      20
      21
      22
      23
      24
      25
      26
      27
      28
      29
      30
      31
      32
      33
      34
      35
      36
      37
      38
      39
      40
      41
      42
      43
      44
      45
      46
      47
      48
      49
      50
      51
      52
      53
      54
      55
      56
      57
      58
      59
      60
      61
      62
      63
      64
      65
      66
      67
      68
      69
      70
      71
      72
      73
      74
      75
      76
      77
      78
      79
      80
      81
      82
      83
      84
      85
      86
      87
      88
      89
      90
      91
      92
      93
      94
      95
      96
      97
      98
      99
     100
     101
     102
     103
     104
     105
     106
     107
     108
     109
     110
     111
     112
     113
     114
     115
     116
     117
     118
     119
     120
     121
     122
     123
     124
     125
     126
     127
     128
     129
     130
     131
     132
     133
     134
     135
     136
     137
     138
     139
     140
     141
     142
     143
     144
     145
     146
     147
     148
     149
     150
     151
     152
     153
     154
     155
     156
     157
     158
     159
     160
     161
     162
     163
     164
     165
     166
     167
     168
     169
     170
     171
     172
     173
     174
     175
     176
     177
     178
     179
     180
     181
     182
     183
     184
     185
     186
     187
     188
     189
     190
     191
     192
     193
     194
     195
     196
     197
     198
     199
     200
     201
     202
     203
     204
     205
     206
     207
     208
      SUBROUTINE DLAHRD( N, K, NB, A, LDA, TAU, T, LDT, Y, LDY )
*
*  -- LAPACK auxiliary routine (version 3.3.1) --
*  -- LAPACK is a software package provided by Univ. of Tennessee,    --
*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
*  -- April 2011                                                      --
*
*     .. Scalar Arguments ..
      INTEGER            K, LDA, LDT, LDY, N, NB
*     ..
*     .. Array Arguments ..
      DOUBLE PRECISION   A( LDA, * ), T( LDT, NB ), TAU( NB ),
     $                   Y( LDY, NB )
*     ..
*
*  Purpose
*  =======
*
*  DLAHRD reduces the first NB columns of a real general n-by-(n-k+1)
*  matrix A so that elements below the k-th subdiagonal are zero. The
*  reduction is performed by an orthogonal similarity transformation
*  Q**T * A * Q. The routine returns the matrices V and T which determine
*  Q as a block reflector I - V*T*V**T, and also the matrix Y = A * V * T.
*
*  This is an OBSOLETE auxiliary routine. 
*  This routine will be 'deprecated' in a  future release.
*  Please use the new routine DLAHR2 instead.
*
*  Arguments
*  =========
*
*  N       (input) INTEGER
*          The order of the matrix A.
*
*  K       (input) INTEGER
*          The offset for the reduction. Elements below the k-th
*          subdiagonal in the first NB columns are reduced to zero.
*
*  NB      (input) INTEGER
*          The number of columns to be reduced.
*
*  A       (input/output) DOUBLE PRECISION array, dimension (LDA,N-K+1)
*          On entry, the n-by-(n-k+1) general matrix A.
*          On exit, the elements on and above the k-th subdiagonal in
*          the first NB columns are overwritten with the corresponding
*          elements of the reduced matrix; the elements below the k-th
*          subdiagonal, with the array TAU, represent the matrix Q as a
*          product of elementary reflectors. The other columns of A are
*          unchanged. See Further Details.
*
*  LDA     (input) INTEGER
*          The leading dimension of the array A.  LDA >= max(1,N).
*
*  TAU     (output) DOUBLE PRECISION array, dimension (NB)
*          The scalar factors of the elementary reflectors. See Further
*          Details.
*
*  T       (output) DOUBLE PRECISION array, dimension (LDT,NB)
*          The upper triangular matrix T.
*
*  LDT     (input) INTEGER
*          The leading dimension of the array T.  LDT >= NB.
*
*  Y       (output) DOUBLE PRECISION array, dimension (LDY,NB)
*          The n-by-nb matrix Y.
*
*  LDY     (input) INTEGER
*          The leading dimension of the array Y. LDY >= N.
*
*  Further Details
*  ===============
*
*  The matrix Q is represented as a product of nb elementary reflectors
*
*     Q = H(1) H(2) . . . H(nb).
*
*  Each H(i) has the form
*
*     H(i) = I - tau * v * v**T
*
*  where tau is a real scalar, and v is a real vector with
*  v(1:i+k-1) = 0, v(i+k) = 1; v(i+k+1:n) is stored on exit in
*  A(i+k+1:n,i), and tau in TAU(i).
*
*  The elements of the vectors v together form the (n-k+1)-by-nb matrix
*  V which is needed, with T and Y, to apply the transformation to the
*  unreduced part of the matrix, using an update of the form:
*  A := (I - V*T*V**T) * (A - Y*V**T).
*
*  The contents of A on exit are illustrated by the following example
*  with n = 7, k = 3 and nb = 2:
*
*     ( a   h   a   a   a )
*     ( a   h   a   a   a )
*     ( a   h   a   a   a )
*     ( h   h   a   a   a )
*     ( v1  h   a   a   a )
*     ( v1  v2  a   a   a )
*     ( v1  v2  a   a   a )
*
*  where a denotes an element of the original matrix A, h denotes a
*  modified element of the upper Hessenberg matrix H, and vi denotes an
*  element of the vector defining H(i).
*
*  =====================================================================
*
*     .. Parameters ..
      DOUBLE PRECISION   ZERO, ONE
      PARAMETER          ( ZERO = 0.0D+0, ONE = 1.0D+0 )
*     ..
*     .. Local Scalars ..
      INTEGER            I
      DOUBLE PRECISION   EI
*     ..
*     .. External Subroutines ..
      EXTERNAL           DAXPY, DCOPY, DGEMV, DLARFG, DSCAL, DTRMV
*     ..
*     .. Intrinsic Functions ..
      INTRINSIC          MIN
*     ..
*     .. Executable Statements ..
*
*     Quick return if possible
*
      IF( N.LE.1 )
     $   RETURN
*
      DO 10 I = 1, NB
         IF( I.GT.1 ) THEN
*
*           Update A(1:n,i)
*
*           Compute i-th column of A - Y * V**T
*
            CALL DGEMV( 'No transpose', N, I-1-ONE, Y, LDY,
     $                  A( K+I-11 ), LDA, ONE, A( 1, I ), 1 )
*
*           Apply I - V * T**T * V**T to this column (call it b) from the
*           left, using the last column of T as workspace
*
*           Let  V = ( V1 )   and   b = ( b1 )   (first I-1 rows)
*                    ( V2 )             ( b2 )
*
*           where V1 is unit lower triangular
*
*           w := V1**T * b1
*
            CALL DCOPY( I-1, A( K+1, I ), 1, T( 1, NB ), 1 )
            CALL DTRMV( 'Lower''Transpose''Unit', I-1, A( K+11 ),
     $                  LDA, T( 1, NB ), 1 )
*
*           w := w + V2**T *b2
*
            CALL DGEMV( 'Transpose', N-K-I+1, I-1, ONE, A( K+I, 1 ),
     $                  LDA, A( K+I, I ), 1, ONE, T( 1, NB ), 1 )
*
*           w := T**T *w
*
            CALL DTRMV( 'Upper''Transpose''Non-unit', I-1, T, LDT,
     $                  T( 1, NB ), 1 )
*
*           b2 := b2 - V2*w
*
            CALL DGEMV( 'No transpose', N-K-I+1, I-1-ONE, A( K+I, 1 ),
     $                  LDA, T( 1, NB ), 1, ONE, A( K+I, I ), 1 )
*
*           b1 := b1 - V1*w
*
            CALL DTRMV( 'Lower''No transpose''Unit', I-1,
     $                  A( K+11 ), LDA, T( 1, NB ), 1 )
            CALL DAXPY( I-1-ONE, T( 1, NB ), 1, A( K+1, I ), 1 )
*
            A( K+I-1, I-1 ) = EI
         END IF
*
*        Generate the elementary reflector H(i) to annihilate
*        A(k+i+1:n,i)
*
         CALL DLARFG( N-K-I+1, A( K+I, I ), A( MIN( K+I+1, N ), I ), 1,
     $                TAU( I ) )
         EI = A( K+I, I )
         A( K+I, I ) = ONE
*
*        Compute  Y(1:n,i)
*
         CALL DGEMV( 'No transpose', N, N-K-I+1, ONE, A( 1, I+1 ), LDA,
     $               A( K+I, I ), 1, ZERO, Y( 1, I ), 1 )
         CALL DGEMV( 'Transpose', N-K-I+1, I-1, ONE, A( K+I, 1 ), LDA,
     $               A( K+I, I ), 1, ZERO, T( 1, I ), 1 )
         CALL DGEMV( 'No transpose', N, I-1-ONE, Y, LDY, T( 1, I ), 1,
     $               ONE, Y( 1, I ), 1 )
         CALL DSCAL( N, TAU( I ), Y( 1, I ), 1 )
*
*        Compute T(1:i,i)
*
         CALL DSCAL( I-1-TAU( I ), T( 1, I ), 1 )
         CALL DTRMV( 'Upper''No transpose''Non-unit', I-1, T, LDT,
     $               T( 1, I ), 1 )
         T( I, I ) = TAU( I )
*
   10 CONTINUE
      A( K+NB, NB ) = EI
*
      RETURN
*
*     End of DLAHRD
*
      END