1
       2
       3
       4
       5
       6
       7
       8
       9
      10
      11
      12
      13
      14
      15
      16
      17
      18
      19
      20
      21
      22
      23
      24
      25
      26
      27
      28
      29
      30
      31
      32
      33
      34
      35
      36
      37
      38
      39
      40
      41
      42
      43
      44
      45
      46
      47
      48
      49
      50
      51
      52
      53
      54
      55
      56
      57
      58
      59
      60
      61
      62
      63
      64
      65
      66
      67
      68
      69
      70
      71
      72
      73
      74
      75
      76
      77
      78
      79
      80
      81
      82
      83
      84
      85
      86
      87
      88
      89
      90
      91
      92
      93
      94
      95
      96
      97
      98
      99
     100
     101
     102
     103
     104
     105
     106
     107
     108
     109
     110
     111
     112
     113
     114
     115
     116
     117
     118
     119
     120
     121
     122
     123
     124
     125
     126
     127
     128
     129
     130
     131
     132
     133
     134
     135
     136
     137
     138
     139
     140
     141
     142
     143
     144
     145
     146
     147
     148
     149
     150
     151
     152
     153
     154
     155
     156
     157
     158
     159
     160
     161
     162
     163
     164
     165
     166
     167
     168
     169
     170
     171
     172
     173
     174
     175
     176
     177
     178
     179
     180
     181
     182
     183
     184
     185
     186
     187
     188
     189
     190
     191
     192
     193
     194
     195
     196
     197
     198
     199
     200
     201
     202
     203
     204
     205
     206
     207
     208
     209
     210
     211
     212
     213
     214
     215
     216
     217
     218
     219
     220
     221
     222
     223
     224
     225
     226
     227
     228
     229
     230
     231
     232
     233
     234
     235
     236
     237
     238
     239
     240
     241
     242
     243
     244
     245
     246
     247
     248
     249
     250
     251
     252
     253
     254
     255
     256
     257
     258
     259
     260
     261
     262
     263
     264
     265
     266
     267
     268
     269
     270
     271
     272
     273
     274
     275
     276
     277
     278
     279
     280
     281
     282
     283
     284
     285
     286
     287
     288
     289
     290
     291
     292
     293
      SUBROUTINE DLAIC1( JOB, J, X, SEST, W, GAMMA, SESTPR, S, C )
*
*  -- LAPACK auxiliary routine (version 3.3.1) --
*  -- LAPACK is a software package provided by Univ. of Tennessee,    --
*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
*  -- April 2011                                                      --
*
*     .. Scalar Arguments ..
      INTEGER            J, JOB
      DOUBLE PRECISION   C, GAMMA, S, SEST, SESTPR
*     ..
*     .. Array Arguments ..
      DOUBLE PRECISION   W( J ), X( J )
*     ..
*
*  Purpose
*  =======
*
*  DLAIC1 applies one step of incremental condition estimation in
*  its simplest version:
*
*  Let x, twonorm(x) = 1, be an approximate singular vector of an j-by-j
*  lower triangular matrix L, such that
*           twonorm(L*x) = sest
*  Then DLAIC1 computes sestpr, s, c such that
*  the vector
*                  [ s*x ]
*           xhat = [  c  ]
*  is an approximate singular vector of
*                  [ L       0  ]
*           Lhat = [ w**T gamma ]
*  in the sense that
*           twonorm(Lhat*xhat) = sestpr.
*
*  Depending on JOB, an estimate for the largest or smallest singular
*  value is computed.
*
*  Note that [s c]**T and sestpr**2 is an eigenpair of the system
*
*      diag(sest*sest, 0) + [alpha  gamma] * [ alpha ]
*                                            [ gamma ]
*
*  where  alpha =  x**T*w.
*
*  Arguments
*  =========
*
*  JOB     (input) INTEGER
*          = 1: an estimate for the largest singular value is computed.
*          = 2: an estimate for the smallest singular value is computed.
*
*  J       (input) INTEGER
*          Length of X and W
*
*  X       (input) DOUBLE PRECISION array, dimension (J)
*          The j-vector x.
*
*  SEST    (input) DOUBLE PRECISION
*          Estimated singular value of j by j matrix L
*
*  W       (input) DOUBLE PRECISION array, dimension (J)
*          The j-vector w.
*
*  GAMMA   (input) DOUBLE PRECISION
*          The diagonal element gamma.
*
*  SESTPR  (output) DOUBLE PRECISION
*          Estimated singular value of (j+1) by (j+1) matrix Lhat.
*
*  S       (output) DOUBLE PRECISION
*          Sine needed in forming xhat.
*
*  C       (output) DOUBLE PRECISION
*          Cosine needed in forming xhat.
*
*  =====================================================================
*
*     .. Parameters ..
      DOUBLE PRECISION   ZERO, ONE, TWO
      PARAMETER          ( ZERO = 0.0D0, ONE = 1.0D0, TWO = 2.0D0 )
      DOUBLE PRECISION   HALF, FOUR
      PARAMETER          ( HALF = 0.5D0, FOUR = 4.0D0 )
*     ..
*     .. Local Scalars ..
      DOUBLE PRECISION   ABSALP, ABSEST, ABSGAM, ALPHA, B, COSINE, EPS,
     $                   NORMA, S1, S2, SINE, T, TEST, TMP, ZETA1, ZETA2
*     ..
*     .. Intrinsic Functions ..
      INTRINSIC          ABSMAXSIGNSQRT
*     ..
*     .. External Functions ..
      DOUBLE PRECISION   DDOT, DLAMCH
      EXTERNAL           DDOT, DLAMCH
*     ..
*     .. Executable Statements ..
*
      EPS = DLAMCH( 'Epsilon' )
      ALPHA = DDOT( J, X, 1, W, 1 )
*
      ABSALP = ABS( ALPHA )
      ABSGAM = ABSGAMMA )
      ABSEST = ABS( SEST )
*
      IF( JOB.EQ.1 ) THEN
*
*        Estimating largest singular value
*
*        special cases
*
         IF( SEST.EQ.ZERO ) THEN
            S1 = MAX( ABSGAM, ABSALP )
            IF( S1.EQ.ZERO ) THEN
               S = ZERO
               C = ONE
               SESTPR = ZERO
            ELSE
               S = ALPHA / S1
               C = GAMMA / S1
               TMP = SQRT( S*S+C*C )
               S = S / TMP
               C = C / TMP
               SESTPR = S1*TMP
            END IF
            RETURN
         ELSE IF( ABSGAM.LE.EPS*ABSEST ) THEN
            S = ONE
            C = ZERO
            TMP = MAX( ABSEST, ABSALP )
            S1 = ABSEST / TMP
            S2 = ABSALP / TMP
            SESTPR = TMP*SQRT( S1*S1+S2*S2 )
            RETURN
         ELSE IF( ABSALP.LE.EPS*ABSEST ) THEN
            S1 = ABSGAM
            S2 = ABSEST
            IF( S1.LE.S2 ) THEN
               S = ONE
               C = ZERO
               SESTPR = S2
            ELSE
               S = ZERO
               C = ONE
               SESTPR = S1
            END IF
            RETURN
         ELSE IF( ABSEST.LE.EPS*ABSALP .OR. ABSEST.LE.EPS*ABSGAM ) THEN
            S1 = ABSGAM
            S2 = ABSALP
            IF( S1.LE.S2 ) THEN
               TMP = S1 / S2
               S = SQRT( ONE+TMP*TMP )
               SESTPR = S2*S
               C = ( GAMMA / S2 ) / S
               S = SIGN( ONE, ALPHA ) / S
            ELSE
               TMP = S2 / S1
               C = SQRT( ONE+TMP*TMP )
               SESTPR = S1*C
               S = ( ALPHA / S1 ) / C
               C = SIGN( ONE, GAMMA ) / C
            END IF
            RETURN
         ELSE
*
*           normal case
*
            ZETA1 = ALPHA / ABSEST
            ZETA2 = GAMMA / ABSEST
*
            B = ( ONE-ZETA1*ZETA1-ZETA2*ZETA2 )*HALF
            C = ZETA1*ZETA1
            IF( B.GT.ZERO ) THEN
               T = C / ( B+SQRT( B*B+C ) )
            ELSE
               T = SQRT( B*B+C ) - B
            END IF
*
            SINE = -ZETA1 / T
            COSINE = -ZETA2 / ( ONE+T )
            TMP = SQRT( SINE*SINE+COSINE*COSINE )
            S = SINE / TMP
            C = COSINE / TMP
            SESTPR = SQRT( T+ONE )*ABSEST
            RETURN
         END IF
*
      ELSE IF( JOB.EQ.2 ) THEN
*
*        Estimating smallest singular value
*
*        special cases
*
         IF( SEST.EQ.ZERO ) THEN
            SESTPR = ZERO
            IFMAX( ABSGAM, ABSALP ).EQ.ZERO ) THEN
               SINE = ONE
               COSINE = ZERO
            ELSE
               SINE = -GAMMA
               COSINE = ALPHA
            END IF
            S1 = MAXABS( SINE ), ABS( COSINE ) )
            S = SINE / S1
            C = COSINE / S1
            TMP = SQRT( S*S+C*C )
            S = S / TMP
            C = C / TMP
            RETURN
         ELSE IF( ABSGAM.LE.EPS*ABSEST ) THEN
            S = ZERO
            C = ONE
            SESTPR = ABSGAM
            RETURN
         ELSE IF( ABSALP.LE.EPS*ABSEST ) THEN
            S1 = ABSGAM
            S2 = ABSEST
            IF( S1.LE.S2 ) THEN
               S = ZERO
               C = ONE
               SESTPR = S1
            ELSE
               S = ONE
               C = ZERO
               SESTPR = S2
            END IF
            RETURN
         ELSE IF( ABSEST.LE.EPS*ABSALP .OR. ABSEST.LE.EPS*ABSGAM ) THEN
            S1 = ABSGAM
            S2 = ABSALP
            IF( S1.LE.S2 ) THEN
               TMP = S1 / S2
               C = SQRT( ONE+TMP*TMP )
               SESTPR = ABSEST*( TMP / C )
               S = -GAMMA / S2 ) / C
               C = SIGN( ONE, ALPHA ) / C
            ELSE
               TMP = S2 / S1
               S = SQRT( ONE+TMP*TMP )
               SESTPR = ABSEST / S
               C = ( ALPHA / S1 ) / S
               S = -SIGN( ONE, GAMMA ) / S
            END IF
            RETURN
         ELSE
*
*           normal case
*
            ZETA1 = ALPHA / ABSEST
            ZETA2 = GAMMA / ABSEST
*
            NORMA = MAX( ONE+ZETA1*ZETA1+ABS( ZETA1*ZETA2 ),
     $              ABS( ZETA1*ZETA2 )+ZETA2*ZETA2 )
*
*           See if root is closer to zero or to ONE
*
            TEST = ONE + TWO*( ZETA1-ZETA2 )*( ZETA1+ZETA2 )
            IF( TEST.GE.ZERO ) THEN
*
*              root is close to zero, compute directly
*
               B = ( ZETA1*ZETA1+ZETA2*ZETA2+ONE )*HALF
               C = ZETA2*ZETA2
               T = C / ( B+SQRTABS( B*B-C ) ) )
               SINE = ZETA1 / ( ONE-T )
               COSINE = -ZETA2 / T
               SESTPR = SQRT( T+FOUR*EPS*EPS*NORMA )*ABSEST
            ELSE
*
*              root is closer to ONE, shift by that amount
*
               B = ( ZETA2*ZETA2+ZETA1*ZETA1-ONE )*HALF
               C = ZETA1*ZETA1
               IF( B.GE.ZERO ) THEN
                  T = -/ ( B+SQRT( B*B+C ) )
               ELSE
                  T = B - SQRT( B*B+C )
               END IF
               SINE = -ZETA1 / T
               COSINE = -ZETA2 / ( ONE+T )
               SESTPR = SQRT( ONE+T+FOUR*EPS*EPS*NORMA )*ABSEST
            END IF
            TMP = SQRT( SINE*SINE+COSINE*COSINE )
            S = SINE / TMP
            C = COSINE / TMP
            RETURN
*
         END IF
      END IF
      RETURN
*
*     End of DLAIC1
*
      END