1
       2
       3
       4
       5
       6
       7
       8
       9
      10
      11
      12
      13
      14
      15
      16
      17
      18
      19
      20
      21
      22
      23
      24
      25
      26
      27
      28
      29
      30
      31
      32
      33
      34
      35
      36
      37
      38
      39
      40
      41
      42
      43
      44
      45
      46
      47
      48
      49
      50
      51
      52
      53
      54
      55
      56
      57
      58
      59
      60
      61
      62
      63
      64
      65
      66
      67
      68
      69
      70
      71
      72
      73
      74
      75
      76
      77
      78
      79
      80
      81
      82
      83
      84
      85
      86
      87
      88
      89
      90
      91
      92
      93
      94
      95
      96
      97
      98
      99
     100
     101
     102
     103
     104
     105
     106
     107
     108
     109
     110
     111
     112
     113
     114
     115
     116
     117
     118
     119
     120
     121
     122
     123
     124
     125
     126
     127
     128
     129
     130
     131
     132
     133
     134
     135
     136
     137
     138
     139
     140
     141
     142
     143
     144
     145
     146
      SUBROUTINE DLARRR( N, D, E, INFO )
*
*  -- LAPACK auxiliary routine (version 3.2) --
*  -- LAPACK is a software package provided by Univ. of Tennessee,    --
*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
*     November 2006
*
*     .. Scalar Arguments ..
      INTEGER            N, INFO
*     ..
*     .. Array Arguments ..
      DOUBLE PRECISION   D( * ), E( * )
*     ..
*
*
*  Purpose
*  =======
*
*  Perform tests to decide whether the symmetric tridiagonal matrix T
*  warrants expensive computations which guarantee high relative accuracy
*  in the eigenvalues.
*
*  Arguments
*  =========
*
*  N       (input) INTEGER
*          The order of the matrix. N > 0.
*
*  D       (input) DOUBLE PRECISION array, dimension (N)
*          The N diagonal elements of the tridiagonal matrix T.
*
*  E       (input/output) DOUBLE PRECISION array, dimension (N)
*          On entry, the first (N-1) entries contain the subdiagonal
*          elements of the tridiagonal matrix T; E(N) is set to ZERO.
*
*  INFO    (output) INTEGER
*          INFO = 0(default) : the matrix warrants computations preserving
*                              relative accuracy.
*          INFO = 1          : the matrix warrants computations guaranteeing
*                              only absolute accuracy.
*
*  Further Details
*  ===============
*
*  Based on contributions by
*     Beresford Parlett, University of California, Berkeley, USA
*     Jim Demmel, University of California, Berkeley, USA
*     Inderjit Dhillon, University of Texas, Austin, USA
*     Osni Marques, LBNL/NERSC, USA
*     Christof Voemel, University of California, Berkeley, USA
*
*  =====================================================================
*
*     .. Parameters ..
      DOUBLE PRECISION   ZERO, RELCOND
      PARAMETER          ( ZERO = 0.0D0,
     $                     RELCOND = 0.999D0 )
*     ..
*     .. Local Scalars ..
      INTEGER            I
      LOGICAL            YESREL
      DOUBLE PRECISION   EPS, SAFMIN, SMLNUM, RMIN, TMP, TMP2,
     $          OFFDIG, OFFDIG2

*     ..
*     .. External Functions ..
      DOUBLE PRECISION   DLAMCH
      EXTERNAL           DLAMCH
*     ..
*     .. Intrinsic Functions ..
      INTRINSIC          ABS
*     ..
*     .. Executable Statements ..
*
*     As a default, do NOT go for relative-accuracy preserving computations.
      INFO = 1

      SAFMIN = DLAMCH( 'Safe minimum' )
      EPS = DLAMCH( 'Precision' )
      SMLNUM = SAFMIN / EPS
      RMIN = SQRT( SMLNUM )

*     Tests for relative accuracy
*
*     Test for scaled diagonal dominance
*     Scale the diagonal entries to one and check whether the sum of the
*     off-diagonals is less than one
*
*     The sdd relative error bounds have a 1/(1- 2*x) factor in them,
*     x = max(OFFDIG + OFFDIG2), so when x is close to 1/2, no relative
*     accuracy is promised.  In the notation of the code fragment below,
*     1/(1 - (OFFDIG + OFFDIG2)) is the condition number.
*     We don't think it is worth going into "sdd mode" unless the relative
*     condition number is reasonable, not 1/macheps.
*     The threshold should be compatible with other thresholds used in the
*     code. We set  OFFDIG + OFFDIG2 <= .999 =: RELCOND, it corresponds
*     to losing at most 3 decimal digits: 1 / (1 - (OFFDIG + OFFDIG2)) <= 1000
*     instead of the current OFFDIG + OFFDIG2 < 1
*
      YESREL = .TRUE.
      OFFDIG = ZERO
      TMP = SQRT(ABS(D(1)))
      IF (TMP.LT.RMIN) YESREL = .FALSE.
      IF(.NOT.YESREL) GOTO 11
      DO 10 I = 2, N
         TMP2 = SQRT(ABS(D(I)))
         IF (TMP2.LT.RMIN) YESREL = .FALSE.
         IF(.NOT.YESREL) GOTO 11
         OFFDIG2 = ABS(E(I-1))/(TMP*TMP2)
         IF(OFFDIG+OFFDIG2.GE.RELCOND) YESREL = .FALSE.
         IF(.NOT.YESREL) GOTO 11
         TMP = TMP2
         OFFDIG = OFFDIG2
 10   CONTINUE
 11   CONTINUE

      IF( YESREL ) THEN
         INFO = 0
         RETURN
      ELSE
      ENDIF
*

*
*     *** MORE TO BE IMPLEMENTED ***
*

*
*     Test if the lower bidiagonal matrix L from T = L D L^T
*     (zero shift facto) is well conditioned
*

*
*     Test if the upper bidiagonal matrix U from T = U D U^T
*     (zero shift facto) is well conditioned.
*     In this case, the matrix needs to be flipped and, at the end
*     of the eigenvector computation, the flip needs to be applied
*     to the computed eigenvectors (and the support)
*

*
      RETURN
*
*     END OF DLARRR
*
      END