1
       2
       3
       4
       5
       6
       7
       8
       9
      10
      11
      12
      13
      14
      15
      16
      17
      18
      19
      20
      21
      22
      23
      24
      25
      26
      27
      28
      29
      30
      31
      32
      33
      34
      35
      36
      37
      38
      39
      40
      41
      42
      43
      44
      45
      46
      47
      48
      49
      50
      51
      52
      53
      54
      55
      56
      57
      58
      59
      60
      61
      62
      63
      64
      65
      66
      67
      68
      69
      70
      71
      72
      73
      74
      75
      76
      77
      78
      79
      80
      81
      82
      83
      84
      85
      86
      87
      88
      89
      90
      91
      92
      93
      94
      95
      96
      97
      98
      99
     100
     101
     102
     103
     104
      SUBROUTINE DLARTGS( X, Y, SIGMA, CS, SN )
      IMPLICIT NONE
*
*  -- LAPACK routine (version 3.3.0) --
*
*  -- Contributed by Brian Sutton of the Randolph-Macon College --
*  -- November 2010
*
*  -- LAPACK is a software package provided by Univ. of Tennessee,    --
*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--     
*
*     .. Scalar Arguments ..
      DOUBLE PRECISION        CS, SIGMA, SN, X, Y
*     ..
*
*  Purpose
*  =======
*
*  DLARTGS generates a plane rotation designed to introduce a bulge in
*  Golub-Reinsch-style implicit QR iteration for the bidiagonal SVD
*  problem. X and Y are the top-row entries, and SIGMA is the shift.
*  The computed CS and SN define a plane rotation satisfying
*
*     [  CS  SN  ]  .  [ X^2 - SIGMA ]  =  [ R ],
*     [ -SN  CS  ]     [    X * Y    ]     [ 0 ]
*
*  with R nonnegative.  If X^2 - SIGMA and X * Y are 0, then the
*  rotation is by PI/2.
*
*  Arguments
*  =========
*
*  X       (input) DOUBLE PRECISION
*          The (1,1) entry of an upper bidiagonal matrix.
*
*  Y       (input) DOUBLE PRECISION
*          The (1,2) entry of an upper bidiagonal matrix.
*
*  SIGMA   (input) DOUBLE PRECISION
*          The shift.
*
*  CS      (output) DOUBLE PRECISION
*          The cosine of the rotation.
*
*  SN      (output) DOUBLE PRECISION
*          The sine of the rotation.
*
*  ===================================================================
*
*     .. Parameters ..
      DOUBLE PRECISION        NEGONE, ONE, ZERO
      PARAMETER          ( NEGONE = -1.0D0, ONE = 1.0D0, ZERO = 0.0D0 )
*     ..
*     .. Local Scalars ..
      DOUBLE PRECISION        R, S, THRESH, W, Z
*     ..
*     .. External Functions ..
      DOUBLE PRECISION        DLAMCH
      EXTERNAL           DLAMCH
*     .. Executable Statements ..
*
      THRESH = DLAMCH('E')
*
*     Compute the first column of B**T*B - SIGMA^2*I, up to a scale
*     factor.
*
      IF( (SIGMA .EQ. ZERO .AND. ABS(X) .LT. THRESH) .OR.
     $          (ABS(X) .EQ. SIGMA .AND. Y .EQ. ZERO) ) THEN
         Z = ZERO
         W = ZERO
      ELSE IF( SIGMA .EQ. ZERO ) THEN
         IF( X .GE. ZERO ) THEN
            Z = X
            W = Y
         ELSE
            Z = -X
            W = -Y
         END IF
      ELSE IFABS(X) .LT. THRESH ) THEN
         Z = -SIGMA*SIGMA
         W = ZERO
      ELSE
         IF( X .GE. ZERO ) THEN
            S = ONE
         ELSE
            S = NEGONE
         END IF
         Z = S * (ABS(X)-SIGMA) * (S+SIGMA/X)
         W = S * Y
      END IF
*
*     Generate the rotation.
*     CALL DLARTGP( Z, W, CS, SN, R ) might seem more natural;
*     reordering the arguments ensures that if Z = 0 then the rotation
*     is by PI/2.
*
      CALL DLARTGP( W, Z, SN, CS, R )
*
      RETURN
*
*     End DLARTGS
*
      END