1
       2
       3
       4
       5
       6
       7
       8
       9
      10
      11
      12
      13
      14
      15
      16
      17
      18
      19
      20
      21
      22
      23
      24
      25
      26
      27
      28
      29
      30
      31
      32
      33
      34
      35
      36
      37
      38
      39
      40
      41
      42
      43
      44
      45
      46
      47
      48
      49
      50
      51
      52
      53
      54
      55
      56
      57
      58
      59
      60
      61
      62
      63
      64
      65
      66
      67
      68
      69
      70
      71
      72
      73
      74
      75
      76
      77
      78
      79
      80
      81
      82
      83
      84
      85
      86
      87
      88
      89
      90
      91
      92
      93
      94
      95
      96
      97
      98
      99
     100
     101
     102
     103
     104
     105
     106
     107
     108
     109
     110
     111
     112
     113
     114
     115
     116
     117
     118
     119
     120
     121
     122
     123
     124
     125
     126
     127
     128
     129
     130
     131
     132
     133
     134
     135
     136
     137
     138
     139
     140
     141
     142
     143
     144
     145
     146
     147
     148
     149
     150
     151
     152
     153
     154
     155
     156
     157
     158
     159
     160
     161
     162
     163
     164
     165
     166
     167
     168
     169
     170
     171
     172
     173
     174
     175
     176
     177
     178
     179
     180
     181
     182
     183
     184
     185
     186
     187
     188
     189
     190
     191
     192
     193
     194
     195
     196
     197
     198
     199
     200
     201
     202
     203
     204
     205
     206
     207
     208
     209
     210
     211
     212
     213
     214
     215
     216
     217
     218
     219
     220
     221
     222
     223
     224
     225
     226
     227
     228
     229
     230
     231
      SUBROUTINE DLASD0( N, SQRE, D, E, U, LDU, VT, LDVT, SMLSIZ, IWORK,
     $                   WORK, INFO )
*
*  -- LAPACK auxiliary routine (version 3.2.2) --
*  -- LAPACK is a software package provided by Univ. of Tennessee,    --
*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
*     June 2010
*
*     .. Scalar Arguments ..
      INTEGER            INFO, LDU, LDVT, N, SMLSIZ, SQRE
*     ..
*     .. Array Arguments ..
      INTEGER            IWORK( * )
      DOUBLE PRECISION   D( * ), E( * ), U( LDU, * ), VT( LDVT, * ),
     $                   WORK( * )
*     ..
*
*  Purpose
*  =======
*
*  Using a divide and conquer approach, DLASD0 computes the singular
*  value decomposition (SVD) of a real upper bidiagonal N-by-M
*  matrix B with diagonal D and offdiagonal E, where M = N + SQRE.
*  The algorithm computes orthogonal matrices U and VT such that
*  B = U * S * VT. The singular values S are overwritten on D.
*
*  A related subroutine, DLASDA, computes only the singular values,
*  and optionally, the singular vectors in compact form.
*
*  Arguments
*  =========
*
*  N      (input) INTEGER
*         On entry, the row dimension of the upper bidiagonal matrix.
*         This is also the dimension of the main diagonal array D.
*
*  SQRE   (input) INTEGER
*         Specifies the column dimension of the bidiagonal matrix.
*         = 0: The bidiagonal matrix has column dimension M = N;
*         = 1: The bidiagonal matrix has column dimension M = N+1;
*
*  D      (input/output) DOUBLE PRECISION array, dimension (N)
*         On entry D contains the main diagonal of the bidiagonal
*         matrix.
*         On exit D, if INFO = 0, contains its singular values.
*
*  E      (input) DOUBLE PRECISION array, dimension (M-1)
*         Contains the subdiagonal entries of the bidiagonal matrix.
*         On exit, E has been destroyed.
*
*  U      (output) DOUBLE PRECISION array, dimension at least (LDQ, N)
*         On exit, U contains the left singular vectors.
*
*  LDU    (input) INTEGER
*         On entry, leading dimension of U.
*
*  VT     (output) DOUBLE PRECISION array, dimension at least (LDVT, M)
*         On exit, VT**T contains the right singular vectors.
*
*  LDVT   (input) INTEGER
*         On entry, leading dimension of VT.
*
*  SMLSIZ (input) INTEGER
*         On entry, maximum size of the subproblems at the
*         bottom of the computation tree.
*
*  IWORK  (workspace) INTEGER work array.
*         Dimension must be at least (8 * N)
*
*  WORK   (workspace) DOUBLE PRECISION work array.
*         Dimension must be at least (3 * M**2 + 2 * M)
*
*  INFO   (output) INTEGER
*          = 0:  successful exit.
*          < 0:  if INFO = -i, the i-th argument had an illegal value.
*          > 0:  if INFO = 1, a singular value did not converge
*
*  Further Details
*  ===============
*
*  Based on contributions by
*     Ming Gu and Huan Ren, Computer Science Division, University of
*     California at Berkeley, USA
*
*  =====================================================================
*
*     .. Local Scalars ..
      INTEGER            I, I1, IC, IDXQ, IDXQC, IM1, INODE, ITEMP, IWK,
     $                   J, LF, LL, LVL, M, NCC, ND, NDB1, NDIML, NDIMR,
     $                   NL, NLF, NLP1, NLVL, NR, NRF, NRP1, SQREI
      DOUBLE PRECISION   ALPHA, BETA
*     ..
*     .. External Subroutines ..
      EXTERNAL           DLASD1, DLASDQ, DLASDT, XERBLA
*     ..
*     .. Executable Statements ..
*
*     Test the input parameters.
*
      INFO = 0
*
      IF( N.LT.0 ) THEN
         INFO = -1
      ELSE IF( ( SQRE.LT.0 ) .OR. ( SQRE.GT.1 ) ) THEN
         INFO = -2
      END IF
*
      M = N + SQRE
*
      IF( LDU.LT.N ) THEN
         INFO = -6
      ELSE IF( LDVT.LT.M ) THEN
         INFO = -8
      ELSE IF( SMLSIZ.LT.3 ) THEN
         INFO = -9
      END IF
      IF( INFO.NE.0 ) THEN
         CALL XERBLA( 'DLASD0'-INFO )
         RETURN
      END IF
*
*     If the input matrix is too small, call DLASDQ to find the SVD.
*
      IF( N.LE.SMLSIZ ) THEN
         CALL DLASDQ( 'U', SQRE, N, M, N, 0, D, E, VT, LDVT, U, LDU, U,
     $                LDU, WORK, INFO )
         RETURN
      END IF
*
*     Set up the computation tree.
*
      INODE = 1
      NDIML = INODE + N
      NDIMR = NDIML + N
      IDXQ = NDIMR + N
      IWK = IDXQ + N
      CALL DLASDT( N, NLVL, ND, IWORK( INODE ), IWORK( NDIML ),
     $             IWORK( NDIMR ), SMLSIZ )
*
*     For the nodes on bottom level of the tree, solve
*     their subproblems by DLASDQ.
*
      NDB1 = ( ND+1 ) / 2
      NCC = 0
      DO 30 I = NDB1, ND
*
*     IC : center row of each node
*     NL : number of rows of left  subproblem
*     NR : number of rows of right subproblem
*     NLF: starting row of the left   subproblem
*     NRF: starting row of the right  subproblem
*
         I1 = I - 1
         IC = IWORK( INODE+I1 )
         NL = IWORK( NDIML+I1 )
         NLP1 = NL + 1
         NR = IWORK( NDIMR+I1 )
         NRP1 = NR + 1
         NLF = IC - NL
         NRF = IC + 1
         SQREI = 1
         CALL DLASDQ( 'U', SQREI, NL, NLP1, NL, NCC, D( NLF ), E( NLF ),
     $                VT( NLF, NLF ), LDVT, U( NLF, NLF ), LDU,
     $                U( NLF, NLF ), LDU, WORK, INFO )
         IF( INFO.NE.0 ) THEN
            RETURN
         END IF
         ITEMP = IDXQ + NLF - 2
         DO 10 J = 1, NL
            IWORK( ITEMP+J ) = J
   10    CONTINUE
         IF( I.EQ.ND ) THEN
            SQREI = SQRE
         ELSE
            SQREI = 1
         END IF
         NRP1 = NR + SQREI
         CALL DLASDQ( 'U', SQREI, NR, NRP1, NR, NCC, D( NRF ), E( NRF ),
     $                VT( NRF, NRF ), LDVT, U( NRF, NRF ), LDU,
     $                U( NRF, NRF ), LDU, WORK, INFO )
         IF( INFO.NE.0 ) THEN
            RETURN
         END IF
         ITEMP = IDXQ + IC
         DO 20 J = 1, NR
            IWORK( ITEMP+J-1 ) = J
   20    CONTINUE
   30 CONTINUE
*
*     Now conquer each subproblem bottom-up.
*
      DO 50 LVL = NLVL, 1-1
*
*        Find the first node LF and last node LL on the
*        current level LVL.
*
         IF( LVL.EQ.1 ) THEN
            LF = 1
            LL = 1
         ELSE
            LF = 2**( LVL-1 )
            LL = 2*LF - 1
         END IF
         DO 40 I = LF, LL
            IM1 = I - 1
            IC = IWORK( INODE+IM1 )
            NL = IWORK( NDIML+IM1 )
            NR = IWORK( NDIMR+IM1 )
            NLF = IC - NL
            IF( ( SQRE.EQ.0 ) .AND. ( I.EQ.LL ) ) THEN
               SQREI = SQRE
            ELSE
               SQREI = 1
            END IF
            IDXQC = IDXQ + NLF - 1
            ALPHA = D( IC )
            BETA = E( IC )
            CALL DLASD1( NL, NR, SQREI, D( NLF ), ALPHA, BETA,
     $                   U( NLF, NLF ), LDU, VT( NLF, NLF ), LDVT,
     $                   IWORK( IDXQC ), IWORK( IWK ), WORK, INFO )
            IF( INFO.NE.0 ) THEN
               RETURN
            END IF
   40    CONTINUE
   50 CONTINUE
*
      RETURN
*
*     End of DLASD0
*
      END