1
       2
       3
       4
       5
       6
       7
       8
       9
      10
      11
      12
      13
      14
      15
      16
      17
      18
      19
      20
      21
      22
      23
      24
      25
      26
      27
      28
      29
      30
      31
      32
      33
      34
      35
      36
      37
      38
      39
      40
      41
      42
      43
      44
      45
      46
      47
      48
      49
      50
      51
      52
      53
      54
      55
      56
      57
      58
      59
      60
      61
      62
      63
      64
      65
      66
      67
      68
      69
      70
      71
      72
      73
      74
      75
      76
      77
      78
      79
      80
      81
      82
      83
      84
      85
      86
      87
      88
      89
      90
      91
      92
      93
      94
      95
      96
      97
      98
      99
     100
     101
     102
     103
     104
     105
     106
     107
     108
     109
     110
     111
     112
     113
     114
     115
     116
     117
     118
     119
     120
     121
     122
     123
     124
     125
     126
     127
     128
     129
     130
     131
     132
     133
     134
     135
     136
     137
     138
     139
     140
     141
     142
     143
     144
     145
     146
     147
     148
     149
     150
     151
     152
     153
     154
     155
     156
     157
     158
     159
     160
     161
     162
     163
     164
     165
     166
     167
     168
     169
     170
     171
     172
     173
     174
     175
     176
     177
     178
     179
     180
     181
     182
     183
     184
     185
     186
     187
     188
     189
     190
     191
     192
     193
     194
     195
     196
     197
     198
     199
     200
     201
     202
     203
     204
     205
     206
     207
     208
     209
     210
     211
     212
     213
     214
     215
     216
     217
     218
     219
     220
     221
     222
     223
     224
     225
     226
     227
     228
     229
     230
     231
     232
     233
      SUBROUTINE DLASD1( NL, NR, SQRE, D, ALPHA, BETA, U, LDU, VT, LDVT,
     $                   IDXQ, IWORK, WORK, INFO )
*
*  -- LAPACK auxiliary routine (version 3.3.1) --
*  -- LAPACK is a software package provided by Univ. of Tennessee,    --
*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
*  -- April 2011                                                      --
*
*     .. Scalar Arguments ..
      INTEGER            INFO, LDU, LDVT, NL, NR, SQRE
      DOUBLE PRECISION   ALPHA, BETA
*     ..
*     .. Array Arguments ..
      INTEGER            IDXQ( * ), IWORK( * )
      DOUBLE PRECISION   D( * ), U( LDU, * ), VT( LDVT, * ), WORK( * )
*     ..
*
*  Purpose
*  =======
*
*  DLASD1 computes the SVD of an upper bidiagonal N-by-M matrix B,
*  where N = NL + NR + 1 and M = N + SQRE. DLASD1 is called from DLASD0.
*
*  A related subroutine DLASD7 handles the case in which the singular
*  values (and the singular vectors in factored form) are desired.
*
*  DLASD1 computes the SVD as follows:
*
*                ( D1(in)    0    0       0 )
*    B = U(in) * (   Z1**T   a   Z2**T    b ) * VT(in)
*                (   0       0   D2(in)   0 )
*
*      = U(out) * ( D(out) 0) * VT(out)
*
*  where Z**T = (Z1**T a Z2**T b) = u**T VT**T, and u is a vector of dimension M
*  with ALPHA and BETA in the NL+1 and NL+2 th entries and zeros
*  elsewhere; and the entry b is empty if SQRE = 0.
*
*  The left singular vectors of the original matrix are stored in U, and
*  the transpose of the right singular vectors are stored in VT, and the
*  singular values are in D.  The algorithm consists of three stages:
*
*     The first stage consists of deflating the size of the problem
*     when there are multiple singular values or when there are zeros in
*     the Z vector.  For each such occurence the dimension of the
*     secular equation problem is reduced by one.  This stage is
*     performed by the routine DLASD2.
*
*     The second stage consists of calculating the updated
*     singular values. This is done by finding the square roots of the
*     roots of the secular equation via the routine DLASD4 (as called
*     by DLASD3). This routine also calculates the singular vectors of
*     the current problem.
*
*     The final stage consists of computing the updated singular vectors
*     directly using the updated singular values.  The singular vectors
*     for the current problem are multiplied with the singular vectors
*     from the overall problem.
*
*  Arguments
*  =========
*
*  NL     (input) INTEGER
*         The row dimension of the upper block.  NL >= 1.
*
*  NR     (input) INTEGER
*         The row dimension of the lower block.  NR >= 1.
*
*  SQRE   (input) INTEGER
*         = 0: the lower block is an NR-by-NR square matrix.
*         = 1: the lower block is an NR-by-(NR+1) rectangular matrix.
*
*         The bidiagonal matrix has row dimension N = NL + NR + 1,
*         and column dimension M = N + SQRE.
*
*  D      (input/output) DOUBLE PRECISION array,
*                        dimension (N = NL+NR+1).
*         On entry D(1:NL,1:NL) contains the singular values of the
*         upper block; and D(NL+2:N) contains the singular values of
*         the lower block. On exit D(1:N) contains the singular values
*         of the modified matrix.
*
*  ALPHA  (input/output) DOUBLE PRECISION
*         Contains the diagonal element associated with the added row.
*
*  BETA   (input/output) DOUBLE PRECISION
*         Contains the off-diagonal element associated with the added
*         row.
*
*  U      (input/output) DOUBLE PRECISION array, dimension(LDU,N)
*         On entry U(1:NL, 1:NL) contains the left singular vectors of
*         the upper block; U(NL+2:N, NL+2:N) contains the left singular
*         vectors of the lower block. On exit U contains the left
*         singular vectors of the bidiagonal matrix.
*
*  LDU    (input) INTEGER
*         The leading dimension of the array U.  LDU >= max( 1, N ).
*
*  VT     (input/output) DOUBLE PRECISION array, dimension(LDVT,M)
*         where M = N + SQRE.
*         On entry VT(1:NL+1, 1:NL+1)**T contains the right singular
*         vectors of the upper block; VT(NL+2:M, NL+2:M)**T contains
*         the right singular vectors of the lower block. On exit
*         VT**T contains the right singular vectors of the
*         bidiagonal matrix.
*
*  LDVT   (input) INTEGER
*         The leading dimension of the array VT.  LDVT >= max( 1, M ).
*
*  IDXQ  (output) INTEGER array, dimension(N)
*         This contains the permutation which will reintegrate the
*         subproblem just solved back into sorted order, i.e.
*         D( IDXQ( I = 1, N ) ) will be in ascending order.
*
*  IWORK  (workspace) INTEGER array, dimension( 4 * N )
*
*  WORK   (workspace) DOUBLE PRECISION array, dimension( 3*M**2 + 2*M )
*
*  INFO   (output) INTEGER
*          = 0:  successful exit.
*          < 0:  if INFO = -i, the i-th argument had an illegal value.
*          > 0:  if INFO = 1, a singular value did not converge
*
*  Further Details
*  ===============
*
*  Based on contributions by
*     Ming Gu and Huan Ren, Computer Science Division, University of
*     California at Berkeley, USA
*
*  =====================================================================
*
*     .. Parameters ..
*
      DOUBLE PRECISION   ONE, ZERO
      PARAMETER          ( ONE = 1.0D+0, ZERO = 0.0D+0 )
*     ..
*     .. Local Scalars ..
      INTEGER            COLTYP, I, IDX, IDXC, IDXP, IQ, ISIGMA, IU2,
     $                   IVT2, IZ, K, LDQ, LDU2, LDVT2, M, N, N1, N2
      DOUBLE PRECISION   ORGNRM
*     ..
*     .. External Subroutines ..
      EXTERNAL           DLAMRG, DLASCL, DLASD2, DLASD3, XERBLA
*     ..
*     .. Intrinsic Functions ..
      INTRINSIC          ABSMAX
*     ..
*     .. Executable Statements ..
*
*     Test the input parameters.
*
      INFO = 0
*
      IF( NL.LT.1 ) THEN
         INFO = -1
      ELSE IF( NR.LT.1 ) THEN
         INFO = -2
      ELSE IF( ( SQRE.LT.0 ) .OR. ( SQRE.GT.1 ) ) THEN
         INFO = -3
      END IF
      IF( INFO.NE.0 ) THEN
         CALL XERBLA( 'DLASD1'-INFO )
         RETURN
      END IF
*
      N = NL + NR + 1
      M = N + SQRE
*
*     The following values are for bookkeeping purposes only.  They are
*     integer pointers which indicate the portion of the workspace
*     used by a particular array in DLASD2 and DLASD3.
*
      LDU2 = N
      LDVT2 = M
*
      IZ = 1
      ISIGMA = IZ + M
      IU2 = ISIGMA + N
      IVT2 = IU2 + LDU2*N
      IQ = IVT2 + LDVT2*M
*
      IDX = 1
      IDXC = IDX + N
      COLTYP = IDXC + N
      IDXP = COLTYP + N
*
*     Scale.
*
      ORGNRM = MAXABS( ALPHA ), ABS( BETA ) )
      D( NL+1 ) = ZERO
      DO 10 I = 1, N
         IFABS( D( I ) ).GT.ORGNRM ) THEN
            ORGNRM = ABS( D( I ) )
         END IF
   10 CONTINUE
      CALL DLASCL( 'G'00, ORGNRM, ONE, N, 1, D, N, INFO )
      ALPHA = ALPHA / ORGNRM
      BETA = BETA / ORGNRM
*
*     Deflate singular values.
*
      CALL DLASD2( NL, NR, SQRE, K, D, WORK( IZ ), ALPHA, BETA, U, LDU,
     $             VT, LDVT, WORK( ISIGMA ), WORK( IU2 ), LDU2,
     $             WORK( IVT2 ), LDVT2, IWORK( IDXP ), IWORK( IDX ),
     $             IWORK( IDXC ), IDXQ, IWORK( COLTYP ), INFO )
*
*     Solve Secular Equation and update singular vectors.
*
      LDQ = K
      CALL DLASD3( NL, NR, SQRE, K, D, WORK( IQ ), LDQ, WORK( ISIGMA ),
     $             U, LDU, WORK( IU2 ), LDU2, VT, LDVT, WORK( IVT2 ),
     $             LDVT2, IWORK( IDXC ), IWORK( COLTYP ), WORK( IZ ),
     $             INFO )
      IF( INFO.NE.0 ) THEN
         RETURN
      END IF
*
*     Unscale.
*
      CALL DLASCL( 'G'00, ONE, ORGNRM, N, 1, D, N, INFO )
*
*     Prepare the IDXQ sorting permutation.
*
      N1 = K
      N2 = N - K
      CALL DLAMRG( N1, N2, D, 1-1, IDXQ )
*
      RETURN
*
*     End of DLASD1
*
      END