1
       2
       3
       4
       5
       6
       7
       8
       9
      10
      11
      12
      13
      14
      15
      16
      17
      18
      19
      20
      21
      22
      23
      24
      25
      26
      27
      28
      29
      30
      31
      32
      33
      34
      35
      36
      37
      38
      39
      40
      41
      42
      43
      44
      45
      46
      47
      48
      49
      50
      51
      52
      53
      54
      55
      56
      57
      58
      59
      60
      61
      62
      63
      64
      65
      66
      67
      68
      69
      70
      71
      72
      73
      74
      75
      76
      77
      78
      79
      80
      81
      82
      83
      84
      85
      86
      87
      88
      89
      90
      91
      92
      93
      94
      95
      96
      97
      98
      99
     100
     101
     102
     103
     104
     105
     106
     107
     108
     109
     110
     111
     112
     113
     114
     115
     116
     117
     118
     119
     120
     121
     122
     123
     124
     125
     126
     127
     128
     129
     130
     131
     132
     133
     134
     135
     136
     137
     138
     139
     140
     141
     142
     143
     144
     145
     146
     147
     148
     149
     150
     151
     152
     153
     154
     155
     156
     157
     158
     159
     160
     161
     162
     163
     164
     165
     166
     167
     168
     169
     170
     171
     172
     173
     174
     175
     176
     177
     178
     179
     180
     181
     182
     183
     184
     185
     186
     187
     188
     189
     190
     191
     192
     193
     194
     195
     196
     197
     198
     199
     200
     201
     202
     203
     204
     205
     206
     207
     208
     209
     210
     211
     212
     213
     214
     215
     216
     217
     218
     219
     220
     221
     222
     223
     224
     225
     226
     227
     228
     229
     230
     231
     232
     233
     234
     235
     236
     237
     238
     239
     240
     241
     242
     243
     244
     245
     246
     247
     248
     249
     250
     251
     252
     253
     254
     255
     256
     257
     258
     259
     260
     261
     262
     263
     264
     265
     266
     267
     268
     269
     270
     271
     272
     273
     274
     275
     276
     277
     278
     279
     280
     281
     282
     283
     284
     285
     286
     287
     288
     289
     290
     291
     292
     293
     294
     295
     296
     297
     298
     299
     300
     301
     302
     303
     304
     305
     306
     307
     308
     309
     310
     311
     312
     313
     314
     315
     316
     317
     318
     319
     320
     321
     322
     323
     324
     325
     326
     327
     328
     329
     330
     331
     332
     333
     334
     335
     336
     337
     338
     339
     340
     341
     342
     343
     344
     345
     346
     347
     348
     349
     350
     351
     352
     353
     354
     355
     356
     357
     358
     359
     360
     361
     362
     363
     364
     365
     366
     367
     368
     369
     370
     371
     372
     373
     374
     375
     376
     377
     378
     379
     380
     381
     382
     383
     384
     385
     386
     387
     388
     389
     390
     391
     392
     393
     394
     395
     396
     397
      SUBROUTINE DPFTRF( TRANSR, UPLO, N, A, INFO )
*
*  -- LAPACK routine (version 3.3.1)                                    --
*
*  -- Contributed by Fred Gustavson of the IBM Watson Research Center --
*  -- April 2011                                                      --
*
*  -- LAPACK is a software package provided by Univ. of Tennessee,    --
*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
*
*     ..
*     .. Scalar Arguments ..
      CHARACTER          TRANSR, UPLO
      INTEGER            N, INFO
*     ..
*     .. Array Arguments ..
      DOUBLE PRECISION   A( 0* )
*
*  Purpose
*  =======
*
*  DPFTRF computes the Cholesky factorization of a real symmetric
*  positive definite matrix A.
*
*  The factorization has the form
*     A = U**T * U,  if UPLO = 'U', or
*     A = L  * L**T,  if UPLO = 'L',
*  where U is an upper triangular matrix and L is lower triangular.
*
*  This is the block version of the algorithm, calling Level 3 BLAS.
*
*  Arguments
*  =========
*
*  TRANSR    (input) CHARACTER*1
*          = 'N':  The Normal TRANSR of RFP A is stored;
*          = 'T':  The Transpose TRANSR of RFP A is stored.
*
*  UPLO    (input) CHARACTER*1
*          = 'U':  Upper triangle of RFP A is stored;
*          = 'L':  Lower triangle of RFP A is stored.
*
*  N       (input) INTEGER
*          The order of the matrix A.  N >= 0.
*
*  A       (input/output) DOUBLE PRECISION array, dimension ( N*(N+1)/2 );
*          On entry, the symmetric matrix A in RFP format. RFP format is
*          described by TRANSR, UPLO, and N as follows: If TRANSR = 'N'
*          then RFP A is (0:N,0:k-1) when N is even; k=N/2. RFP A is
*          (0:N-1,0:k) when N is odd; k=N/2. IF TRANSR = 'T' then RFP is
*          the transpose of RFP A as defined when
*          TRANSR = 'N'. The contents of RFP A are defined by UPLO as
*          follows: If UPLO = 'U' the RFP A contains the NT elements of
*          upper packed A. If UPLO = 'L' the RFP A contains the elements
*          of lower packed A. The LDA of RFP A is (N+1)/2 when TRANSR =
*          'T'. When TRANSR is 'N' the LDA is N+1 when N is even and N
*          is odd. See the Note below for more details.
*
*          On exit, if INFO = 0, the factor U or L from the Cholesky
*          factorization RFP A = U**T*U or RFP A = L*L**T.
*
*  INFO    (output) INTEGER
*          = 0:  successful exit
*          < 0:  if INFO = -i, the i-th argument had an illegal value
*          > 0:  if INFO = i, the leading minor of order i is not
*                positive definite, and the factorization could not be
*                completed.
*
*  Further Details
*  ===============
*
*  We first consider Rectangular Full Packed (RFP) Format when N is
*  even. We give an example where N = 6.
*
*      AP is Upper             AP is Lower
*
*   00 01 02 03 04 05       00
*      11 12 13 14 15       10 11
*         22 23 24 25       20 21 22
*            33 34 35       30 31 32 33
*               44 45       40 41 42 43 44
*                  55       50 51 52 53 54 55
*
*
*  Let TRANSR = 'N'. RFP holds AP as follows:
*  For UPLO = 'U' the upper trapezoid A(0:5,0:2) consists of the last
*  three columns of AP upper. The lower triangle A(4:6,0:2) consists of
*  the transpose of the first three columns of AP upper.
*  For UPLO = 'L' the lower trapezoid A(1:6,0:2) consists of the first
*  three columns of AP lower. The upper triangle A(0:2,0:2) consists of
*  the transpose of the last three columns of AP lower.
*  This covers the case N even and TRANSR = 'N'.
*
*         RFP A                   RFP A
*
*        03 04 05                33 43 53
*        13 14 15                00 44 54
*        23 24 25                10 11 55
*        33 34 35                20 21 22
*        00 44 45                30 31 32
*        01 11 55                40 41 42
*        02 12 22                50 51 52
*
*  Now let TRANSR = 'T'. RFP A in both UPLO cases is just the
*  transpose of RFP A above. One therefore gets:
*
*
*           RFP A                   RFP A
*
*     03 13 23 33 00 01 02    33 00 10 20 30 40 50
*     04 14 24 34 44 11 12    43 44 11 21 31 41 51
*     05 15 25 35 45 55 22    53 54 55 22 32 42 52
*
*
*  We then consider Rectangular Full Packed (RFP) Format when N is
*  odd. We give an example where N = 5.
*
*     AP is Upper                 AP is Lower
*
*   00 01 02 03 04              00
*      11 12 13 14              10 11
*         22 23 24              20 21 22
*            33 34              30 31 32 33
*               44              40 41 42 43 44
*
*
*  Let TRANSR = 'N'. RFP holds AP as follows:
*  For UPLO = 'U' the upper trapezoid A(0:4,0:2) consists of the last
*  three columns of AP upper. The lower triangle A(3:4,0:1) consists of
*  the transpose of the first two columns of AP upper.
*  For UPLO = 'L' the lower trapezoid A(0:4,0:2) consists of the first
*  three columns of AP lower. The upper triangle A(0:1,1:2) consists of
*  the transpose of the last two columns of AP lower.
*  This covers the case N odd and TRANSR = 'N'.
*
*         RFP A                   RFP A
*
*        02 03 04                00 33 43
*        12 13 14                10 11 44
*        22 23 24                20 21 22
*        00 33 34                30 31 32
*        01 11 44                40 41 42
*
*  Now let TRANSR = 'T'. RFP A in both UPLO cases is just the
*  transpose of RFP A above. One therefore gets:
*
*           RFP A                   RFP A
*
*     02 12 22 00 01             00 10 20 30 40 50
*     03 13 23 33 11             33 11 21 31 41 51
*     04 14 24 34 44             43 44 22 32 42 52
*
*  =====================================================================
*
*     .. Parameters ..
      DOUBLE PRECISION   ONE
      PARAMETER          ( ONE = 1.0D+0 )
*     ..
*     .. Local Scalars ..
      LOGICAL            LOWER, NISODD, NORMALTRANSR
      INTEGER            N1, N2, K
*     ..
*     .. External Functions ..
      LOGICAL            LSAME
      EXTERNAL           LSAME
*     ..
*     .. External Subroutines ..
      EXTERNAL           XERBLA, DSYRK, DPOTRF, DTRSM
*     ..
*     .. Intrinsic Functions ..
      INTRINSIC          MOD
*     ..
*     .. Executable Statements ..
*
*     Test the input parameters.
*
      INFO = 0
      NORMALTRANSR = LSAME( TRANSR, 'N' )
      LOWER = LSAME( UPLO, 'L' )
      IF.NOT.NORMALTRANSR .AND. .NOT.LSAME( TRANSR, 'T' ) ) THEN
         INFO = -1
      ELSE IF.NOT.LOWER .AND. .NOT.LSAME( UPLO, 'U' ) ) THEN
         INFO = -2
      ELSE IF( N.LT.0 ) THEN
         INFO = -3
      END IF
      IF( INFO.NE.0 ) THEN
         CALL XERBLA( 'DPFTRF'-INFO )
         RETURN
      END IF
*
*     Quick return if possible
*
      IF( N.EQ.0 )
     $   RETURN
*
*     If N is odd, set NISODD = .TRUE.
*     If N is even, set K = N/2 and NISODD = .FALSE.
*
      IFMOD( N, 2 ).EQ.0 ) THEN
         K = N / 2
         NISODD = .FALSE.
      ELSE
         NISODD = .TRUE.
      END IF
*
*     Set N1 and N2 depending on LOWER
*
      IF( LOWER ) THEN
         N2 = N / 2
         N1 = N - N2
      ELSE
         N1 = N / 2
         N2 = N - N1
      END IF
*
*     start execution: there are eight cases
*
      IF( NISODD ) THEN
*
*        N is odd
*
         IF( NORMALTRANSR ) THEN
*
*           N is odd and TRANSR = 'N'
*
            IF( LOWER ) THEN
*
*             SRPA for LOWER, NORMAL and N is odd ( a(0:n-1,0:n1-1) )
*             T1 -> a(0,0), T2 -> a(0,1), S -> a(n1,0)
*             T1 -> a(0), T2 -> a(n), S -> a(n1)
*
               CALL DPOTRF( 'L', N1, A( 0 ), N, INFO )
               IF( INFO.GT.0 )
     $            RETURN
               CALL DTRSM( 'R''L''T''N', N2, N1, ONE, A( 0 ), N,
     $                     A( N1 ), N )
               CALL DSYRK( 'U''N', N2, N1, -ONE, A( N1 ), N, ONE,
     $                     A( N ), N )
               CALL DPOTRF( 'U', N2, A( N ), N, INFO )
               IF( INFO.GT.0 )
     $            INFO = INFO + N1
*
            ELSE
*
*             SRPA for UPPER, NORMAL and N is odd ( a(0:n-1,0:n2-1)
*             T1 -> a(n1+1,0), T2 -> a(n1,0), S -> a(0,0)
*             T1 -> a(n2), T2 -> a(n1), S -> a(0)
*
               CALL DPOTRF( 'L', N1, A( N2 ), N, INFO )
               IF( INFO.GT.0 )
     $            RETURN
               CALL DTRSM( 'L''L''N''N', N1, N2, ONE, A( N2 ), N,
     $                     A( 0 ), N )
               CALL DSYRK( 'U''T', N2, N1, -ONE, A( 0 ), N, ONE,
     $                     A( N1 ), N )
               CALL DPOTRF( 'U', N2, A( N1 ), N, INFO )
               IF( INFO.GT.0 )
     $            INFO = INFO + N1
*
            END IF
*
         ELSE
*
*           N is odd and TRANSR = 'T'
*
            IF( LOWER ) THEN
*
*              SRPA for LOWER, TRANSPOSE and N is odd
*              T1 -> A(0,0) , T2 -> A(1,0) , S -> A(0,n1)
*              T1 -> a(0+0) , T2 -> a(1+0) , S -> a(0+n1*n1); lda=n1
*
               CALL DPOTRF( 'U', N1, A( 0 ), N1, INFO )
               IF( INFO.GT.0 )
     $            RETURN
               CALL DTRSM( 'L''U''T''N', N1, N2, ONE, A( 0 ), N1,
     $                     A( N1*N1 ), N1 )
               CALL DSYRK( 'L''T', N2, N1, -ONE, A( N1*N1 ), N1, ONE,
     $                     A( 1 ), N1 )
               CALL DPOTRF( 'L', N2, A( 1 ), N1, INFO )
               IF( INFO.GT.0 )
     $            INFO = INFO + N1
*
            ELSE
*
*              SRPA for UPPER, TRANSPOSE and N is odd
*              T1 -> A(0,n1+1), T2 -> A(0,n1), S -> A(0,0)
*              T1 -> a(n2*n2), T2 -> a(n1*n2), S -> a(0); lda = n2
*
               CALL DPOTRF( 'U', N1, A( N2*N2 ), N2, INFO )
               IF( INFO.GT.0 )
     $            RETURN
               CALL DTRSM( 'R''U''N''N', N2, N1, ONE, A( N2*N2 ),
     $                     N2, A( 0 ), N2 )
               CALL DSYRK( 'L''N', N2, N1, -ONE, A( 0 ), N2, ONE,
     $                     A( N1*N2 ), N2 )
               CALL DPOTRF( 'L', N2, A( N1*N2 ), N2, INFO )
               IF( INFO.GT.0 )
     $            INFO = INFO + N1
*
            END IF
*
         END IF
*
      ELSE
*
*        N is even
*
         IF( NORMALTRANSR ) THEN
*
*           N is even and TRANSR = 'N'
*
            IF( LOWER ) THEN
*
*              SRPA for LOWER, NORMAL, and N is even ( a(0:n,0:k-1) )
*              T1 -> a(1,0), T2 -> a(0,0), S -> a(k+1,0)
*              T1 -> a(1), T2 -> a(0), S -> a(k+1)
*
               CALL DPOTRF( 'L', K, A( 1 ), N+1, INFO )
               IF( INFO.GT.0 )
     $            RETURN
               CALL DTRSM( 'R''L''T''N', K, K, ONE, A( 1 ), N+1,
     $                     A( K+1 ), N+1 )
               CALL DSYRK( 'U''N', K, K, -ONE, A( K+1 ), N+1, ONE,
     $                     A( 0 ), N+1 )
               CALL DPOTRF( 'U', K, A( 0 ), N+1, INFO )
               IF( INFO.GT.0 )
     $            INFO = INFO + K
*
            ELSE
*
*              SRPA for UPPER, NORMAL, and N is even ( a(0:n,0:k-1) )
*              T1 -> a(k+1,0) ,  T2 -> a(k,0),   S -> a(0,0)
*              T1 -> a(k+1), T2 -> a(k), S -> a(0)
*
               CALL DPOTRF( 'L', K, A( K+1 ), N+1, INFO )
               IF( INFO.GT.0 )
     $            RETURN
               CALL DTRSM( 'L''L''N''N', K, K, ONE, A( K+1 ),
     $                     N+1, A( 0 ), N+1 )
               CALL DSYRK( 'U''T', K, K, -ONE, A( 0 ), N+1, ONE,
     $                     A( K ), N+1 )
               CALL DPOTRF( 'U', K, A( K ), N+1, INFO )
               IF( INFO.GT.0 )
     $            INFO = INFO + K
*
            END IF
*
         ELSE
*
*           N is even and TRANSR = 'T'
*
            IF( LOWER ) THEN
*
*              SRPA for LOWER, TRANSPOSE and N is even (see paper)
*              T1 -> B(0,1), T2 -> B(0,0), S -> B(0,k+1)
*              T1 -> a(0+k), T2 -> a(0+0), S -> a(0+k*(k+1)); lda=k
*
               CALL DPOTRF( 'U', K, A( 0+K ), K, INFO )
               IF( INFO.GT.0 )
     $            RETURN
               CALL DTRSM( 'L''U''T''N', K, K, ONE, A( K ), N1,
     $                     A( K*( K+1 ) ), K )
               CALL DSYRK( 'L''T', K, K, -ONE, A( K*( K+1 ) ), K, ONE,
     $                     A( 0 ), K )
               CALL DPOTRF( 'L', K, A( 0 ), K, INFO )
               IF( INFO.GT.0 )
     $            INFO = INFO + K
*
            ELSE
*
*              SRPA for UPPER, TRANSPOSE and N is even (see paper)
*              T1 -> B(0,k+1),     T2 -> B(0,k),   S -> B(0,0)
*              T1 -> a(0+k*(k+1)), T2 -> a(0+k*k), S -> a(0+0)); lda=k
*
               CALL DPOTRF( 'U', K, A( K*( K+1 ) ), K, INFO )
               IF( INFO.GT.0 )
     $            RETURN
               CALL DTRSM( 'R''U''N''N', K, K, ONE,
     $                     A( K*( K+1 ) ), K, A( 0 ), K )
               CALL DSYRK( 'L''N', K, K, -ONE, A( 0 ), K, ONE,
     $                     A( K*K ), K )
               CALL DPOTRF( 'L', K, A( K*K ), K, INFO )
               IF( INFO.GT.0 )
     $            INFO = INFO + K
*
            END IF
*
         END IF
*
      END IF
*
      RETURN
*
*     End of DPFTRF
*
      END