| 
  12
 3
 4
 5
 6
 7
 8
 9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 
 | 
      SUBROUTINE DPOTRF( UPLO, N, A, LDA, INFO )*
 *  -- LAPACK routine (version 3.3.1) --
 *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
 *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
 *  -- April 2011                                                      --
 *
 *     .. Scalar Arguments ..
 CHARACTER          UPLO
 INTEGER            INFO, LDA, N
 *     ..
 *     .. Array Arguments ..
 DOUBLE PRECISION   A( LDA, * )
 *     ..
 *
 *  Purpose
 *  =======
 *
 *  DPOTRF computes the Cholesky factorization of a real symmetric
 *  positive definite matrix A.
 *
 *  The factorization has the form
 *     A = U**T * U,  if UPLO = 'U', or
 *     A = L  * L**T,  if UPLO = 'L',
 *  where U is an upper triangular matrix and L is lower triangular.
 *
 *  This is the block version of the algorithm, calling Level 3 BLAS.
 *
 *  Arguments
 *  =========
 *
 *  UPLO    (input) CHARACTER*1
 *          = 'U':  Upper triangle of A is stored;
 *          = 'L':  Lower triangle of A is stored.
 *
 *  N       (input) INTEGER
 *          The order of the matrix A.  N >= 0.
 *
 *  A       (input/output) DOUBLE PRECISION array, dimension (LDA,N)
 *          On entry, the symmetric matrix A.  If UPLO = 'U', the leading
 *          N-by-N upper triangular part of A contains the upper
 *          triangular part of the matrix A, and the strictly lower
 *          triangular part of A is not referenced.  If UPLO = 'L', the
 *          leading N-by-N lower triangular part of A contains the lower
 *          triangular part of the matrix A, and the strictly upper
 *          triangular part of A is not referenced.
 *
 *          On exit, if INFO = 0, the factor U or L from the Cholesky
 *          factorization A = U**T*U or A = L*L**T.
 *
 *  LDA     (input) INTEGER
 *          The leading dimension of the array A.  LDA >= max(1,N).
 *
 *  INFO    (output) INTEGER
 *          = 0:  successful exit
 *          < 0:  if INFO = -i, the i-th argument had an illegal value
 *          > 0:  if INFO = i, the leading minor of order i is not
 *                positive definite, and the factorization could not be
 *                completed.
 *
 *  =====================================================================
 *
 *     .. Parameters ..
 DOUBLE PRECISION   ONE
 PARAMETER          ( ONE = 1.0D+0 )
 *     ..
 *     .. Local Scalars ..
 LOGICAL            UPPER
 INTEGER            J, JB, NB
 *     ..
 *     .. External Functions ..
 LOGICAL            LSAME
 INTEGER            ILAENV
 EXTERNAL           LSAME, ILAENV
 *     ..
 *     .. External Subroutines ..
 EXTERNAL           DGEMM, DPOTF2, DSYRK, DTRSM, XERBLA
 *     ..
 *     .. Intrinsic Functions ..
 INTRINSIC          MAX, MIN
 *     ..
 *     .. Executable Statements ..
 *
 *     Test the input parameters.
 *
 INFO = 0
 UPPER = LSAME( UPLO, 'U' )
 IF( .NOT.UPPER .AND. .NOT.LSAME( UPLO, 'L' ) ) THEN
 INFO = -1
 ELSE IF( N.LT.0 ) THEN
 INFO = -2
 ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
 INFO = -4
 END IF
 IF( INFO.NE.0 ) THEN
 CALL XERBLA( 'DPOTRF', -INFO )
 RETURN
 END IF
 *
 *     Quick return if possible
 *
 IF( N.EQ.0 )
 $   RETURN
 *
 *     Determine the block size for this environment.
 *
 NB = ILAENV( 1, 'DPOTRF', UPLO, N, -1, -1, -1 )
 IF( NB.LE.1 .OR. NB.GE.N ) THEN
 *
 *        Use unblocked code.
 *
 CALL DPOTF2( UPLO, N, A, LDA, INFO )
 ELSE
 *
 *        Use blocked code.
 *
 IF( UPPER ) THEN
 *
 *           Compute the Cholesky factorization A = U**T*U.
 *
 DO 10 J = 1, N, NB
 *
 *              Update and factorize the current diagonal block and test
 *              for non-positive-definiteness.
 *
 JB = MIN( NB, N-J+1 )
 CALL DSYRK( 'Upper', 'Transpose', JB, J-1, -ONE,
 $                     A( 1, J ), LDA, ONE, A( J, J ), LDA )
 CALL DPOTF2( 'Upper', JB, A( J, J ), LDA, INFO )
 IF( INFO.NE.0 )
 $            GO TO 30
 IF( J+JB.LE.N ) THEN
 *
 *                 Compute the current block row.
 *
 CALL DGEMM( 'Transpose', 'No transpose', JB, N-J-JB+1,
 $                        J-1, -ONE, A( 1, J ), LDA, A( 1, J+JB ),
 $                        LDA, ONE, A( J, J+JB ), LDA )
 CALL DTRSM( 'Left', 'Upper', 'Transpose', 'Non-unit',
 $                        JB, N-J-JB+1, ONE, A( J, J ), LDA,
 $                        A( J, J+JB ), LDA )
 END IF
 10       CONTINUE
 *
 ELSE
 *
 *           Compute the Cholesky factorization A = L*L**T.
 *
 DO 20 J = 1, N, NB
 *
 *              Update and factorize the current diagonal block and test
 *              for non-positive-definiteness.
 *
 JB = MIN( NB, N-J+1 )
 CALL DSYRK( 'Lower', 'No transpose', JB, J-1, -ONE,
 $                     A( J, 1 ), LDA, ONE, A( J, J ), LDA )
 CALL DPOTF2( 'Lower', JB, A( J, J ), LDA, INFO )
 IF( INFO.NE.0 )
 $            GO TO 30
 IF( J+JB.LE.N ) THEN
 *
 *                 Compute the current block column.
 *
 CALL DGEMM( 'No transpose', 'Transpose', N-J-JB+1, JB,
 $                        J-1, -ONE, A( J+JB, 1 ), LDA, A( J, 1 ),
 $                        LDA, ONE, A( J+JB, J ), LDA )
 CALL DTRSM( 'Right', 'Lower', 'Transpose', 'Non-unit',
 $                        N-J-JB+1, JB, ONE, A( J, J ), LDA,
 $                        A( J+JB, J ), LDA )
 END IF
 20       CONTINUE
 END IF
 END IF
 GO TO 40
 *
 30 CONTINUE
 INFO = INFO + J - 1
 *
 40 CONTINUE
 RETURN
 *
 *     End of DPOTRF
 *
 END
 
 |