1
       2
       3
       4
       5
       6
       7
       8
       9
      10
      11
      12
      13
      14
      15
      16
      17
      18
      19
      20
      21
      22
      23
      24
      25
      26
      27
      28
      29
      30
      31
      32
      33
      34
      35
      36
      37
      38
      39
      40
      41
      42
      43
      44
      45
      46
      47
      48
      49
      50
      51
      52
      53
      54
      55
      56
      57
      58
      59
      60
      61
      62
      63
      64
      65
      66
      67
      68
      69
      70
      71
      72
      73
      74
      75
      76
      77
      78
      79
      80
      81
      82
      83
      84
      85
      86
      87
      88
      89
      90
      91
      92
      93
      94
      95
      96
      97
      98
      99
     100
     101
     102
     103
     104
     105
     106
     107
     108
     109
     110
     111
     112
     113
     114
     115
     116
     117
     118
     119
     120
     121
     122
     123
     124
     125
     126
     127
     128
     129
     130
     131
     132
     133
     134
     135
     136
     137
     138
     139
     140
     141
     142
     143
     144
     145
     146
     147
     148
     149
     150
     151
     152
     153
     154
     155
     156
     157
     158
     159
     160
     161
     162
     163
     164
     165
     166
     167
     168
     169
     170
     171
     172
     173
     174
     175
     176
     177
     178
     179
     180
     181
     182
     183
     184
     185
     186
     187
     188
     189
     190
     191
     192
     193
     194
     195
     196
     197
     198
     199
     200
     201
     202
     203
     204
     205
     206
     207
     208
     209
     210
     211
     212
     213
     214
     215
     216
     217
     218
     219
     220
     221
     222
     223
     224
     225
     226
     227
     228
     229
     230
     231
     232
     233
     234
     235
     236
     237
     238
     239
     240
     241
     242
     243
     244
     245
     246
     247
     248
     249
     250
     251
     252
     253
     254
     255
     256
     257
     258
     259
     260
     261
     262
     263
     264
     265
     266
     267
     268
     269
     270
     271
     272
     273
     274
     275
     276
     277
     278
     279
     280
     281
     282
     283
     284
     285
     286
     287
     288
     289
     290
     291
     292
     293
     294
     295
     296
     297
     298
     299
     300
     301
     302
     303
     304
     305
     306
     307
     308
     309
     310
     311
     312
     313
     314
     315
     316
     317
     318
     319
     320
     321
     322
     323
     324
     325
     326
     327
     328
     329
     330
     331
     332
     333
     334
     335
     336
     337
     338
     339
     340
     341
     342
     343
     344
     345
     346
     347
     348
     349
     350
     351
      SUBROUTINE DSPOSV( UPLO, N, NRHS, A, LDA, B, LDB, X, LDX, WORK,
     $                   SWORK, ITER, INFO )
*
*  -- LAPACK PROTOTYPE driver routine (version 3.3.1) --
*     Univ. of Tennessee, Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..
*  -- April 2011                                                      --
*
*     ..
*     .. Scalar Arguments ..
      CHARACTER          UPLO
      INTEGER            INFO, ITER, LDA, LDB, LDX, N, NRHS
*     ..
*     .. Array Arguments ..
      REAL               SWORK( * )
      DOUBLE PRECISION   A( LDA, * ), B( LDB, * ), WORK( N, * ),
     $                   X( LDX, * )
*     ..
*
*  Purpose
*  =======
*
*  DSPOSV computes the solution to a real system of linear equations
*     A * X = B,
*  where A is an N-by-N symmetric positive definite matrix and X and B
*  are N-by-NRHS matrices.
*
*  DSPOSV first attempts to factorize the matrix in SINGLE PRECISION
*  and use this factorization within an iterative refinement procedure
*  to produce a solution with DOUBLE PRECISION normwise backward error
*  quality (see below). If the approach fails the method switches to a
*  DOUBLE PRECISION factorization and solve.
*
*  The iterative refinement is not going to be a winning strategy if
*  the ratio SINGLE PRECISION performance over DOUBLE PRECISION
*  performance is too small. A reasonable strategy should take the
*  number of right-hand sides and the size of the matrix into account.
*  This might be done with a call to ILAENV in the future. Up to now, we
*  always try iterative refinement.
*
*  The iterative refinement process is stopped if
*      ITER > ITERMAX
*  or for all the RHS we have:
*      RNRM < SQRT(N)*XNRM*ANRM*EPS*BWDMAX
*  where
*      o ITER is the number of the current iteration in the iterative
*        refinement process
*      o RNRM is the infinity-norm of the residual
*      o XNRM is the infinity-norm of the solution
*      o ANRM is the infinity-operator-norm of the matrix A
*      o EPS is the machine epsilon returned by DLAMCH('Epsilon')
*  The value ITERMAX and BWDMAX are fixed to 30 and 1.0D+00
*  respectively.
*
*  Arguments
*  =========
*
*  UPLO    (input) CHARACTER*1
*          = 'U':  Upper triangle of A is stored;
*          = 'L':  Lower triangle of A is stored.
*
*  N       (input) INTEGER
*          The number of linear equations, i.e., the order of the
*          matrix A.  N >= 0.
*
*  NRHS    (input) INTEGER
*          The number of right hand sides, i.e., the number of columns
*          of the matrix B.  NRHS >= 0.
*
*  A       (input/output) DOUBLE PRECISION array,
*          dimension (LDA,N)
*          On entry, the symmetric matrix A.  If UPLO = 'U', the leading
*          N-by-N upper triangular part of A contains the upper
*          triangular part of the matrix A, and the strictly lower
*          triangular part of A is not referenced.  If UPLO = 'L', the
*          leading N-by-N lower triangular part of A contains the lower
*          triangular part of the matrix A, and the strictly upper
*          triangular part of A is not referenced.
*          On exit, if iterative refinement has been successfully used
*          (INFO.EQ.0 and ITER.GE.0, see description below), then A is
*          unchanged, if double precision factorization has been used
*          (INFO.EQ.0 and ITER.LT.0, see description below), then the
*          array A contains the factor U or L from the Cholesky
*          factorization A = U**T*U or A = L*L**T.
*
*
*  LDA     (input) INTEGER
*          The leading dimension of the array A.  LDA >= max(1,N).
*
*  B       (input) DOUBLE PRECISION array, dimension (LDB,NRHS)
*          The N-by-NRHS right hand side matrix B.
*
*  LDB     (input) INTEGER
*          The leading dimension of the array B.  LDB >= max(1,N).
*
*  X       (output) DOUBLE PRECISION array, dimension (LDX,NRHS)
*          If INFO = 0, the N-by-NRHS solution matrix X.
*
*  LDX     (input) INTEGER
*          The leading dimension of the array X.  LDX >= max(1,N).
*
*  WORK    (workspace) DOUBLE PRECISION array, dimension (N,NRHS)
*          This array is used to hold the residual vectors.
*
*  SWORK   (workspace) REAL array, dimension (N*(N+NRHS))
*          This array is used to use the single precision matrix and the
*          right-hand sides or solutions in single precision.
*
*  ITER    (output) INTEGER
*          < 0: iterative refinement has failed, double precision
*               factorization has been performed
*               -1 : the routine fell back to full precision for
*                    implementation- or machine-specific reasons
*               -2 : narrowing the precision induced an overflow,
*                    the routine fell back to full precision
*               -3 : failure of SPOTRF
*               -31: stop the iterative refinement after the 30th
*                    iterations
*          > 0: iterative refinement has been sucessfully used.
*               Returns the number of iterations
*
*  INFO    (output) INTEGER
*          = 0:  successful exit
*          < 0:  if INFO = -i, the i-th argument had an illegal value
*          > 0:  if INFO = i, the leading minor of order i of (DOUBLE
*                PRECISION) A is not positive definite, so the
*                factorization could not be completed, and the solution
*                has not been computed.
*
*  =====================================================================
*
*     .. Parameters ..
      LOGICAL            DOITREF
      PARAMETER          ( DOITREF = .TRUE. )
*
      INTEGER            ITERMAX
      PARAMETER          ( ITERMAX = 30 )
*
      DOUBLE PRECISION   BWDMAX
      PARAMETER          ( BWDMAX = 1.0E+00 )
*
      DOUBLE PRECISION   NEGONE, ONE
      PARAMETER          ( NEGONE = -1.0D+0, ONE = 1.0D+0 )
*
*     .. Local Scalars ..
      INTEGER            I, IITER, PTSA, PTSX
      DOUBLE PRECISION   ANRM, CTE, EPS, RNRM, XNRM
*
*     .. External Subroutines ..
      EXTERNAL           DAXPY, DSYMM, DLACPY, DLAT2S, DLAG2S, SLAG2D,
     $                   SPOTRF, SPOTRS, XERBLA
*     ..
*     .. External Functions ..
      INTEGER            IDAMAX
      DOUBLE PRECISION   DLAMCH, DLANSY
      LOGICAL            LSAME
      EXTERNAL           IDAMAX, DLAMCH, DLANSY, LSAME
*     ..
*     .. Intrinsic Functions ..
      INTRINSIC          ABSDBLEMAXSQRT
*     ..
*     .. Executable Statements ..
*
      INFO = 0
      ITER = 0
*
*     Test the input parameters.
*
      IF.NOT.LSAME( UPLO, 'U' ) .AND. .NOT.LSAME( UPLO, 'L' ) ) THEN
         INFO = -1
      ELSE IF( N.LT.0 ) THEN
         INFO = -2
      ELSE IF( NRHS.LT.0 ) THEN
         INFO = -3
      ELSE IF( LDA.LT.MAX1, N ) ) THEN
         INFO = -5
      ELSE IF( LDB.LT.MAX1, N ) ) THEN
         INFO = -7
      ELSE IF( LDX.LT.MAX1, N ) ) THEN
         INFO = -9
      END IF
      IF( INFO.NE.0 ) THEN
         CALL XERBLA( 'DSPOSV'-INFO )
         RETURN
      END IF
*
*     Quick return if (N.EQ.0).
*
      IF( N.EQ.0 )
     $   RETURN
*
*     Skip single precision iterative refinement if a priori slower
*     than double precision factorization.
*
      IF.NOT.DOITREF ) THEN
         ITER = -1
         GO TO 40
      END IF
*
*     Compute some constants.
*
      ANRM = DLANSY( 'I', UPLO, N, A, LDA, WORK )
      EPS = DLAMCH( 'Epsilon' )
      CTE = ANRM*EPS*SQRTDBLE( N ) )*BWDMAX
*
*     Set the indices PTSA, PTSX for referencing SA and SX in SWORK.
*
      PTSA = 1
      PTSX = PTSA + N*N
*
*     Convert B from double precision to single precision and store the
*     result in SX.
*
      CALL DLAG2S( N, NRHS, B, LDB, SWORK( PTSX ), N, INFO )
*
      IF( INFO.NE.0 ) THEN
         ITER = -2
         GO TO 40
      END IF
*
*     Convert A from double precision to single precision and store the
*     result in SA.
*
      CALL DLAT2S( UPLO, N, A, LDA, SWORK( PTSA ), N, INFO )
*
      IF( INFO.NE.0 ) THEN
         ITER = -2
         GO TO 40
      END IF
*
*     Compute the Cholesky factorization of SA.
*
      CALL SPOTRF( UPLO, N, SWORK( PTSA ), N, INFO )
*
      IF( INFO.NE.0 ) THEN
         ITER = -3
         GO TO 40
      END IF
*
*     Solve the system SA*SX = SB.
*
      CALL SPOTRS( UPLO, N, NRHS, SWORK( PTSA ), N, SWORK( PTSX ), N,
     $             INFO )
*
*     Convert SX back to double precision
*
      CALL SLAG2D( N, NRHS, SWORK( PTSX ), N, X, LDX, INFO )
*
*     Compute R = B - AX (R is WORK).
*
      CALL DLACPY( 'All', N, NRHS, B, LDB, WORK, N )
*
      CALL DSYMM( 'Left', UPLO, N, NRHS, NEGONE, A, LDA, X, LDX, ONE,
     $            WORK, N )
*
*     Check whether the NRHS normwise backward errors satisfy the
*     stopping criterion. If yes, set ITER=0 and return.
*
      DO I = 1, NRHS
         XNRM = ABS( X( IDAMAX( N, X( 1, I ), 1 ), I ) )
         RNRM = ABS( WORK( IDAMAX( N, WORK( 1, I ), 1 ), I ) )
         IF( RNRM.GT.XNRM*CTE )
     $      GO TO 10
      END DO
*
*     If we are here, the NRHS normwise backward errors satisfy the
*     stopping criterion. We are good to exit.
*
      ITER = 0
      RETURN
*
   10 CONTINUE
*
      DO 30 IITER = 1, ITERMAX
*
*        Convert R (in WORK) from double precision to single precision
*        and store the result in SX.
*
         CALL DLAG2S( N, NRHS, WORK, N, SWORK( PTSX ), N, INFO )
*
         IF( INFO.NE.0 ) THEN
            ITER = -2
            GO TO 40
         END IF
*
*        Solve the system SA*SX = SR.
*
         CALL SPOTRS( UPLO, N, NRHS, SWORK( PTSA ), N, SWORK( PTSX ), N,
     $                INFO )
*
*        Convert SX back to double precision and update the current
*        iterate.
*
         CALL SLAG2D( N, NRHS, SWORK( PTSX ), N, WORK, N, INFO )
*
         DO I = 1, NRHS
            CALL DAXPY( N, ONE, WORK( 1, I ), 1, X( 1, I ), 1 )
         END DO
*
*        Compute R = B - AX (R is WORK).
*
         CALL DLACPY( 'All', N, NRHS, B, LDB, WORK, N )
*
         CALL DSYMM( 'L', UPLO, N, NRHS, NEGONE, A, LDA, X, LDX, ONE,
     $               WORK, N )
*
*        Check whether the NRHS normwise backward errors satisfy the
*        stopping criterion. If yes, set ITER=IITER>0 and return.
*
         DO I = 1, NRHS
            XNRM = ABS( X( IDAMAX( N, X( 1, I ), 1 ), I ) )
            RNRM = ABS( WORK( IDAMAX( N, WORK( 1, I ), 1 ), I ) )
            IF( RNRM.GT.XNRM*CTE )
     $         GO TO 20
         END DO
*
*        If we are here, the NRHS normwise backward errors satisfy the
*        stopping criterion, we are good to exit.
*
         ITER = IITER
*
         RETURN
*
   20    CONTINUE
*
   30 CONTINUE
*
*     If we are at this place of the code, this is because we have
*     performed ITER=ITERMAX iterations and never satisified the
*     stopping criterion, set up the ITER flag accordingly and follow
*     up on double precision routine.
*
      ITER = -ITERMAX - 1
*
   40 CONTINUE
*
*     Single-precision iterative refinement failed to converge to a
*     satisfactory solution, so we resort to double precision.
*
      CALL DPOTRF( UPLO, N, A, LDA, INFO )
*
      IF( INFO.NE.0 )
     $   RETURN
*
      CALL DLACPY( 'All', N, NRHS, B, LDB, X, LDX )
      CALL DPOTRS( UPLO, N, NRHS, A, LDA, X, LDX, INFO )
*
      RETURN
*
*     End of DSPOSV.
*
      END