1
       2
       3
       4
       5
       6
       7
       8
       9
      10
      11
      12
      13
      14
      15
      16
      17
      18
      19
      20
      21
      22
      23
      24
      25
      26
      27
      28
      29
      30
      31
      32
      33
      34
      35
      36
      37
      38
      39
      40
      41
      42
      43
      44
      45
      46
      47
      48
      49
      50
      51
      52
      53
      54
      55
      56
      57
      58
      59
      60
      61
      62
      63
      64
      65
      66
      67
      68
      69
      70
      71
      72
      73
      74
      75
      76
      77
      78
      79
      80
      81
      82
      83
      84
      85
      86
      87
      88
      89
      90
      91
      92
      93
      94
      95
      96
      97
      98
      99
     100
     101
     102
     103
     104
     105
     106
     107
     108
     109
     110
     111
     112
     113
     114
     115
     116
     117
     118
     119
     120
     121
     122
     123
     124
     125
     126
     127
     128
     129
     130
     131
     132
     133
     134
     135
     136
     137
     138
     139
     140
     141
     142
     143
     144
     145
     146
     147
     148
     149
     150
     151
     152
     153
     154
     155
     156
     157
     158
     159
     160
     161
     162
     163
     164
     165
     166
     167
     168
     169
     170
     171
     172
     173
     174
     175
     176
     177
     178
     179
     180
     181
     182
     183
     184
     185
     186
     187
     188
     189
     190
     191
     192
     193
     194
     195
     196
     197
     198
     199
     200
     201
     202
     203
     204
     205
     206
     207
     208
     209
     210
     211
     212
     213
     214
     215
     216
     217
     218
     219
     220
     221
     222
     223
     224
     225
     226
     227
     228
     229
     230
     231
     232
     233
     234
     235
     236
     237
     238
     239
     240
     241
     242
     243
     244
     245
     246
     247
     248
     249
     250
     251
     252
     253
     254
     255
     256
     257
     258
     259
     260
     261
     262
     263
     264
     265
     266
     267
     268
     269
     270
     271
     272
     273
     274
     275
     276
     277
     278
     279
     280
     281
     282
     283
     284
     285
     286
     287
     288
     289
     290
     291
     292
     293
     294
     295
     296
     297
     298
     299
     300
     301
     302
     303
     304
     305
     306
     307
     308
     309
     310
     311
     312
     313
     314
     315
     316
     317
     318
     319
     320
     321
     322
     323
     324
     325
     326
     327
     328
     329
     330
     331
     332
     333
     334
     335
      SUBROUTINE DSPTRI( UPLO, N, AP, IPIV, WORK, INFO )
*
*  -- LAPACK routine (version 3.3.1) --
*  -- LAPACK is a software package provided by Univ. of Tennessee,    --
*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
*  -- April 2011                                                      --
*
*     .. Scalar Arguments ..
      CHARACTER          UPLO
      INTEGER            INFO, N
*     ..
*     .. Array Arguments ..
      INTEGER            IPIV( * )
      DOUBLE PRECISION   AP( * ), WORK( * )
*     ..
*
*  Purpose
*  =======
*
*  DSPTRI computes the inverse of a real symmetric indefinite matrix
*  A in packed storage using the factorization A = U*D*U**T or
*  A = L*D*L**T computed by DSPTRF.
*
*  Arguments
*  =========
*
*  UPLO    (input) CHARACTER*1
*          Specifies whether the details of the factorization are stored
*          as an upper or lower triangular matrix.
*          = 'U':  Upper triangular, form is A = U*D*U**T;
*          = 'L':  Lower triangular, form is A = L*D*L**T.
*
*  N       (input) INTEGER
*          The order of the matrix A.  N >= 0.
*
*  AP      (input/output) DOUBLE PRECISION array, dimension (N*(N+1)/2)
*          On entry, the block diagonal matrix D and the multipliers
*          used to obtain the factor U or L as computed by DSPTRF,
*          stored as a packed triangular matrix.
*
*          On exit, if INFO = 0, the (symmetric) inverse of the original
*          matrix, stored as a packed triangular matrix. The j-th column
*          of inv(A) is stored in the array AP as follows:
*          if UPLO = 'U', AP(i + (j-1)*j/2) = inv(A)(i,j) for 1<=i<=j;
*          if UPLO = 'L',
*             AP(i + (j-1)*(2n-j)/2) = inv(A)(i,j) for j<=i<=n.
*
*  IPIV    (input) INTEGER array, dimension (N)
*          Details of the interchanges and the block structure of D
*          as determined by DSPTRF.
*
*  WORK    (workspace) DOUBLE PRECISION array, dimension (N)
*
*  INFO    (output) INTEGER
*          = 0: successful exit
*          < 0: if INFO = -i, the i-th argument had an illegal value
*          > 0: if INFO = i, D(i,i) = 0; the matrix is singular and its
*               inverse could not be computed.
*
*  =====================================================================
*
*     .. Parameters ..
      DOUBLE PRECISION   ONE, ZERO
      PARAMETER          ( ONE = 1.0D+0, ZERO = 0.0D+0 )
*     ..
*     .. Local Scalars ..
      LOGICAL            UPPER
      INTEGER            J, K, KC, KCNEXT, KP, KPC, KSTEP, KX, NPP
      DOUBLE PRECISION   AK, AKKP1, AKP1, D, T, TEMP
*     ..
*     .. External Functions ..
      LOGICAL            LSAME
      DOUBLE PRECISION   DDOT
      EXTERNAL           LSAME, DDOT
*     ..
*     .. External Subroutines ..
      EXTERNAL           DCOPY, DSPMV, DSWAP, XERBLA
*     ..
*     .. Intrinsic Functions ..
      INTRINSIC          ABS
*     ..
*     .. Executable Statements ..
*
*     Test the input parameters.
*
      INFO = 0
      UPPER = LSAME( UPLO, 'U' )
      IF.NOT.UPPER .AND. .NOT.LSAME( UPLO, 'L' ) ) THEN
         INFO = -1
      ELSE IF( N.LT.0 ) THEN
         INFO = -2
      END IF
      IF( INFO.NE.0 ) THEN
         CALL XERBLA( 'DSPTRI'-INFO )
         RETURN
      END IF
*
*     Quick return if possible
*
      IF( N.EQ.0 )
     $   RETURN
*
*     Check that the diagonal matrix D is nonsingular.
*
      IF( UPPER ) THEN
*
*        Upper triangular storage: examine D from bottom to top
*
         KP = N*( N+1 ) / 2
         DO 10 INFO = N, 1-1
            IF( IPIV( INFO ).GT.0 .AND. AP( KP ).EQ.ZERO )
     $         RETURN
            KP = KP - INFO
   10    CONTINUE
      ELSE
*
*        Lower triangular storage: examine D from top to bottom.
*
         KP = 1
         DO 20 INFO = 1, N
            IF( IPIV( INFO ).GT.0 .AND. AP( KP ).EQ.ZERO )
     $         RETURN
            KP = KP + N - INFO + 1
   20    CONTINUE
      END IF
      INFO = 0
*
      IF( UPPER ) THEN
*
*        Compute inv(A) from the factorization A = U*D*U**T.
*
*        K is the main loop index, increasing from 1 to N in steps of
*        1 or 2, depending on the size of the diagonal blocks.
*
         K = 1
         KC = 1
   30    CONTINUE
*
*        If K > N, exit from loop.
*
         IF( K.GT.N )
     $      GO TO 50
*
         KCNEXT = KC + K
         IF( IPIV( K ).GT.0 ) THEN
*
*           1 x 1 diagonal block
*
*           Invert the diagonal block.
*
            AP( KC+K-1 ) = ONE / AP( KC+K-1 )
*
*           Compute column K of the inverse.
*
            IF( K.GT.1 ) THEN
               CALL DCOPY( K-1, AP( KC ), 1, WORK, 1 )
               CALL DSPMV( UPLO, K-1-ONE, AP, WORK, 1, ZERO, AP( KC ),
     $                     1 )
               AP( KC+K-1 ) = AP( KC+K-1 ) -
     $                        DDOT( K-1, WORK, 1, AP( KC ), 1 )
            END IF
            KSTEP = 1
         ELSE
*
*           2 x 2 diagonal block
*
*           Invert the diagonal block.
*
            T = ABS( AP( KCNEXT+K-1 ) )
            AK = AP( KC+K-1 ) / T
            AKP1 = AP( KCNEXT+K ) / T
            AKKP1 = AP( KCNEXT+K-1 ) / T
            D = T*( AK*AKP1-ONE )
            AP( KC+K-1 ) = AKP1 / D
            AP( KCNEXT+K ) = AK / D
            AP( KCNEXT+K-1 ) = -AKKP1 / D
*
*           Compute columns K and K+1 of the inverse.
*
            IF( K.GT.1 ) THEN
               CALL DCOPY( K-1, AP( KC ), 1, WORK, 1 )
               CALL DSPMV( UPLO, K-1-ONE, AP, WORK, 1, ZERO, AP( KC ),
     $                     1 )
               AP( KC+K-1 ) = AP( KC+K-1 ) -
     $                        DDOT( K-1, WORK, 1, AP( KC ), 1 )
               AP( KCNEXT+K-1 ) = AP( KCNEXT+K-1 ) -
     $                            DDOT( K-1, AP( KC ), 1, AP( KCNEXT ),
     $                            1 )
               CALL DCOPY( K-1, AP( KCNEXT ), 1, WORK, 1 )
               CALL DSPMV( UPLO, K-1-ONE, AP, WORK, 1, ZERO,
     $                     AP( KCNEXT ), 1 )
               AP( KCNEXT+K ) = AP( KCNEXT+K ) -
     $                          DDOT( K-1, WORK, 1, AP( KCNEXT ), 1 )
            END IF
            KSTEP = 2
            KCNEXT = KCNEXT + K + 1
         END IF
*
         KP = ABS( IPIV( K ) )
         IF( KP.NE.K ) THEN
*
*           Interchange rows and columns K and KP in the leading
*           submatrix A(1:k+1,1:k+1)
*
            KPC = ( KP-1 )*KP / 2 + 1
            CALL DSWAP( KP-1, AP( KC ), 1, AP( KPC ), 1 )
            KX = KPC + KP - 1
            DO 40 J = KP + 1, K - 1
               KX = KX + J - 1
               TEMP = AP( KC+J-1 )
               AP( KC+J-1 ) = AP( KX )
               AP( KX ) = TEMP
   40       CONTINUE
            TEMP = AP( KC+K-1 )
            AP( KC+K-1 ) = AP( KPC+KP-1 )
            AP( KPC+KP-1 ) = TEMP
            IF( KSTEP.EQ.2 ) THEN
               TEMP = AP( KC+K+K-1 )
               AP( KC+K+K-1 ) = AP( KC+K+KP-1 )
               AP( KC+K+KP-1 ) = TEMP
            END IF
         END IF
*
         K = K + KSTEP
         KC = KCNEXT
         GO TO 30
   50    CONTINUE
*
      ELSE
*
*        Compute inv(A) from the factorization A = L*D*L**T.
*
*        K is the main loop index, increasing from 1 to N in steps of
*        1 or 2, depending on the size of the diagonal blocks.
*
         NPP = N*( N+1 ) / 2
         K = N
         KC = NPP
   60    CONTINUE
*
*        If K < 1, exit from loop.
*
         IF( K.LT.1 )
     $      GO TO 80
*
         KCNEXT = KC - ( N-K+2 )
         IF( IPIV( K ).GT.0 ) THEN
*
*           1 x 1 diagonal block
*
*           Invert the diagonal block.
*
            AP( KC ) = ONE / AP( KC )
*
*           Compute column K of the inverse.
*
            IF( K.LT.N ) THEN
               CALL DCOPY( N-K, AP( KC+1 ), 1, WORK, 1 )
               CALL DSPMV( UPLO, N-K, -ONE, AP( KC+N-K+1 ), WORK, 1,
     $                     ZERO, AP( KC+1 ), 1 )
               AP( KC ) = AP( KC ) - DDOT( N-K, WORK, 1, AP( KC+1 ), 1 )
            END IF
            KSTEP = 1
         ELSE
*
*           2 x 2 diagonal block
*
*           Invert the diagonal block.
*
            T = ABS( AP( KCNEXT+1 ) )
            AK = AP( KCNEXT ) / T
            AKP1 = AP( KC ) / T
            AKKP1 = AP( KCNEXT+1 ) / T
            D = T*( AK*AKP1-ONE )
            AP( KCNEXT ) = AKP1 / D
            AP( KC ) = AK / D
            AP( KCNEXT+1 ) = -AKKP1 / D
*
*           Compute columns K-1 and K of the inverse.
*
            IF( K.LT.N ) THEN
               CALL DCOPY( N-K, AP( KC+1 ), 1, WORK, 1 )
               CALL DSPMV( UPLO, N-K, -ONE, AP( KC+( N-K+1 ) ), WORK, 1,
     $                     ZERO, AP( KC+1 ), 1 )
               AP( KC ) = AP( KC ) - DDOT( N-K, WORK, 1, AP( KC+1 ), 1 )
               AP( KCNEXT+1 ) = AP( KCNEXT+1 ) -
     $                          DDOT( N-K, AP( KC+1 ), 1,
     $                          AP( KCNEXT+2 ), 1 )
               CALL DCOPY( N-K, AP( KCNEXT+2 ), 1, WORK, 1 )
               CALL DSPMV( UPLO, N-K, -ONE, AP( KC+( N-K+1 ) ), WORK, 1,
     $                     ZERO, AP( KCNEXT+2 ), 1 )
               AP( KCNEXT ) = AP( KCNEXT ) -
     $                        DDOT( N-K, WORK, 1, AP( KCNEXT+2 ), 1 )
            END IF
            KSTEP = 2
            KCNEXT = KCNEXT - ( N-K+3 )
         END IF
*
         KP = ABS( IPIV( K ) )
         IF( KP.NE.K ) THEN
*
*           Interchange rows and columns K and KP in the trailing
*           submatrix A(k-1:n,k-1:n)
*
            KPC = NPP - ( N-KP+1 )*( N-KP+2 ) / 2 + 1
            IF( KP.LT.N )
     $         CALL DSWAP( N-KP, AP( KC+KP-K+1 ), 1, AP( KPC+1 ), 1 )
            KX = KC + KP - K
            DO 70 J = K + 1, KP - 1
               KX = KX + N - J + 1
               TEMP = AP( KC+J-K )
               AP( KC+J-K ) = AP( KX )
               AP( KX ) = TEMP
   70       CONTINUE
            TEMP = AP( KC )
            AP( KC ) = AP( KPC )
            AP( KPC ) = TEMP
            IF( KSTEP.EQ.2 ) THEN
               TEMP = AP( KC-N+K-1 )
               AP( KC-N+K-1 ) = AP( KC-N+KP-1 )
               AP( KC-N+KP-1 ) = TEMP
            END IF
         END IF
*
         K = K - KSTEP
         KC = KCNEXT
         GO TO 60
   80    CONTINUE
      END IF
*
      RETURN
*
*     End of DSPTRI
*
      END