1
       2
       3
       4
       5
       6
       7
       8
       9
      10
      11
      12
      13
      14
      15
      16
      17
      18
      19
      20
      21
      22
      23
      24
      25
      26
      27
      28
      29
      30
      31
      32
      33
      34
      35
      36
      37
      38
      39
      40
      41
      42
      43
      44
      45
      46
      47
      48
      49
      50
      51
      52
      53
      54
      55
      56
      57
      58
      59
      60
      61
      62
      63
      64
      65
      66
      67
      68
      69
      70
      71
      72
      73
      74
      75
      76
      77
      78
      79
      80
      81
      82
      83
      84
      85
      86
      87
      88
      89
      90
      91
      92
      93
      94
      95
      96
      97
      98
      99
     100
     101
     102
     103
     104
     105
     106
     107
     108
     109
     110
     111
     112
     113
     114
     115
     116
     117
     118
     119
     120
     121
     122
     123
     124
     125
     126
     127
     128
     129
     130
     131
     132
     133
     134
     135
     136
     137
     138
     139
     140
     141
     142
     143
     144
     145
     146
     147
     148
     149
     150
     151
     152
     153
     154
     155
     156
     157
     158
     159
     160
     161
     162
     163
     164
     165
     166
     167
     168
     169
     170
     171
     172
     173
     174
     175
     176
     177
     178
     179
     180
     181
     182
     183
     184
     185
     186
     187
     188
     189
     190
     191
     192
     193
     194
     195
     196
     197
     198
     199
     200
     201
     202
     203
     204
     205
     206
     207
     208
     209
     210
     211
     212
     213
     214
     215
     216
     217
     218
     219
     220
     221
     222
     223
     224
     225
     226
     227
     228
     229
     230
     231
     232
     233
     234
     235
     236
     237
     238
     239
     240
     241
     242
     243
     244
     245
     246
     247
     248
     249
     250
     251
     252
     253
     254
     255
     256
     257
     258
     259
     260
     261
     262
     263
     264
     265
     266
     267
     268
     269
     270
     271
     272
     273
     274
     275
     276
     277
     278
     279
     280
     281
     282
     283
     284
     285
     286
     287
     288
     289
     290
     291
     292
     293
     294
     295
     296
     297
     298
     299
     300
     301
     302
     303
     304
     305
     306
     307
     308
     309
     310
     311
     312
     313
     314
     315
     316
     317
     318
     319
     320
     321
     322
     323
     324
     325
     326
     327
     328
     329
     330
     331
     332
     333
     334
     335
     336
     337
     338
     339
     340
     341
     342
     343
     344
     345
     346
     347
     348
     349
     350
     351
     352
     353
     354
     355
     356
     357
     358
     359
     360
     361
     362
     363
     364
     365
     366
     367
     368
     369
     370
     371
     372
     373
     374
     375
     376
     377
     378
     379
     380
     381
     382
     383
     384
     385
     386
     387
     388
     389
     390
     391
     392
     393
     394
     395
     396
     397
     398
     399
     400
     401
     402
     403
     404
     405
     406
     407
     408
     409
     410
     411
     412
     413
     414
     415
     416
     417
     418
     419
     420
     421
     422
     423
     424
     425
     426
     427
     428
     429
     430
     431
     432
     433
     434
     435
     436
     437
     438
     439
     440
     441
     442
     443
     444
     445
     446
     447
     448
     449
     450
     451
     452
     453
     454
     455
     456
     457
     458
     459
     460
     461
     462
     463
     464
     465
     466
     467
     468
     469
     470
     471
     472
     473
     474
     475
     476
     477
     478
     479
     480
     481
     482
     483
     484
     485
     486
     487
     488
     489
     490
     491
     492
     493
     494
     495
     496
     497
     498
     499
     500
     501
     502
     503
     504
     505
     506
     507
     508
     509
     510
     511
     512
     513
     514
     515
     516
     517
     518
     519
     520
     521
     522
     523
     524
     525
     526
     527
     528
     529
     530
     531
     532
     533
     534
     535
     536
     537
     538
     539
     540
     541
     542
     543
     544
     545
     546
     547
     548
     549
     550
     551
     552
     553
     554
     555
     556
     557
     558
     559
     560
     561
     562
     563
     564
     565
     566
     567
     568
     569
     570
     571
     572
     573
     574
     575
     576
     577
     578
     579
     580
     581
     582
     583
     584
     585
     586
     587
     588
     589
     590
     591
     592
     593
     594
     595
     596
     597
     598
     599
     600
     601
     602
     603
     604
     605
     606
     607
     608
     609
     610
     611
     612
     613
     614
     615
     616
     617
     618
     619
     620
     621
     622
     623
     624
     625
     626
     627
     628
     629
     630
     631
     632
     633
     634
     635
     636
     637
     638
     639
     640
     641
     642
     643
     644
     645
     646
     647
     648
     649
     650
     651
     652
      SUBROUTINE DSTEBZ( RANGE, ORDER, N, VL, VU, IL, IU, ABSTOL, D, E,
     $                   M, NSPLIT, W, IBLOCK, ISPLIT, WORK, IWORK,
     $                   INFO )
*
*  -- LAPACK routine (version 3.3.1) --
*  -- LAPACK is a software package provided by Univ. of Tennessee,    --
*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
*  -- April 2011                                                      --
*     8-18-00:  Increase FUDGE factor for T3E (eca)
*
*     .. Scalar Arguments ..
      CHARACTER          ORDER, RANGE
      INTEGER            IL, INFO, IU, M, N, NSPLIT
      DOUBLE PRECISION   ABSTOL, VL, VU
*     ..
*     .. Array Arguments ..
      INTEGER            IBLOCK( * ), ISPLIT( * ), IWORK( * )
      DOUBLE PRECISION   D( * ), E( * ), W( * ), WORK( * )
*     ..
*
*  Purpose
*  =======
*
*  DSTEBZ computes the eigenvalues of a symmetric tridiagonal
*  matrix T.  The user may ask for all eigenvalues, all eigenvalues
*  in the half-open interval (VL, VU], or the IL-th through IU-th
*  eigenvalues.
*
*  To avoid overflow, the matrix must be scaled so that its
*  largest element is no greater than overflow**(1/2) *
*  underflow**(1/4) in absolute value, and for greatest
*  accuracy, it should not be much smaller than that.
*
*  See W. Kahan "Accurate Eigenvalues of a Symmetric Tridiagonal
*  Matrix", Report CS41, Computer Science Dept., Stanford
*  University, July 21, 1966.
*
*  Arguments
*  =========
*
*  RANGE   (input) CHARACTER*1
*          = 'A': ("All")   all eigenvalues will be found.
*          = 'V': ("Value") all eigenvalues in the half-open interval
*                           (VL, VU] will be found.
*          = 'I': ("Index") the IL-th through IU-th eigenvalues (of the
*                           entire matrix) will be found.
*
*  ORDER   (input) CHARACTER*1
*          = 'B': ("By Block") the eigenvalues will be grouped by
*                              split-off block (see IBLOCK, ISPLIT) and
*                              ordered from smallest to largest within
*                              the block.
*          = 'E': ("Entire matrix")
*                              the eigenvalues for the entire matrix
*                              will be ordered from smallest to
*                              largest.
*
*  N       (input) INTEGER
*          The order of the tridiagonal matrix T.  N >= 0.
*
*  VL      (input) DOUBLE PRECISION
*  VU      (input) DOUBLE PRECISION
*          If RANGE='V', the lower and upper bounds of the interval to
*          be searched for eigenvalues.  Eigenvalues less than or equal
*          to VL, or greater than VU, will not be returned.  VL < VU.
*          Not referenced if RANGE = 'A' or 'I'.
*
*  IL      (input) INTEGER
*  IU      (input) INTEGER
*          If RANGE='I', the indices (in ascending order) of the
*          smallest and largest eigenvalues to be returned.
*          1 <= IL <= IU <= N, if N > 0; IL = 1 and IU = 0 if N = 0.
*          Not referenced if RANGE = 'A' or 'V'.
*
*  ABSTOL  (input) DOUBLE PRECISION
*          The absolute tolerance for the eigenvalues.  An eigenvalue
*          (or cluster) is considered to be located if it has been
*          determined to lie in an interval whose width is ABSTOL or
*          less.  If ABSTOL is less than or equal to zero, then ULP*|T|
*          will be used, where |T| means the 1-norm of T.
*
*          Eigenvalues will be computed most accurately when ABSTOL is
*          set to twice the underflow threshold 2*DLAMCH('S'), not zero.
*
*  D       (input) DOUBLE PRECISION array, dimension (N)
*          The n diagonal elements of the tridiagonal matrix T.
*
*  E       (input) DOUBLE PRECISION array, dimension (N-1)
*          The (n-1) off-diagonal elements of the tridiagonal matrix T.
*
*  M       (output) INTEGER
*          The actual number of eigenvalues found. 0 <= M <= N.
*          (See also the description of INFO=2,3.)
*
*  NSPLIT  (output) INTEGER
*          The number of diagonal blocks in the matrix T.
*          1 <= NSPLIT <= N.
*
*  W       (output) DOUBLE PRECISION array, dimension (N)
*          On exit, the first M elements of W will contain the
*          eigenvalues.  (DSTEBZ may use the remaining N-M elements as
*          workspace.)
*
*  IBLOCK  (output) INTEGER array, dimension (N)
*          At each row/column j where E(j) is zero or small, the
*          matrix T is considered to split into a block diagonal
*          matrix.  On exit, if INFO = 0, IBLOCK(i) specifies to which
*          block (from 1 to the number of blocks) the eigenvalue W(i)
*          belongs.  (DSTEBZ may use the remaining N-M elements as
*          workspace.)
*
*  ISPLIT  (output) INTEGER array, dimension (N)
*          The splitting points, at which T breaks up into submatrices.
*          The first submatrix consists of rows/columns 1 to ISPLIT(1),
*          the second of rows/columns ISPLIT(1)+1 through ISPLIT(2),
*          etc., and the NSPLIT-th consists of rows/columns
*          ISPLIT(NSPLIT-1)+1 through ISPLIT(NSPLIT)=N.
*          (Only the first NSPLIT elements will actually be used, but
*          since the user cannot know a priori what value NSPLIT will
*          have, N words must be reserved for ISPLIT.)
*
*  WORK    (workspace) DOUBLE PRECISION array, dimension (4*N)
*
*  IWORK   (workspace) INTEGER array, dimension (3*N)
*
*  INFO    (output) INTEGER
*          = 0:  successful exit
*          < 0:  if INFO = -i, the i-th argument had an illegal value
*          > 0:  some or all of the eigenvalues failed to converge or
*                were not computed:
*                =1 or 3: Bisection failed to converge for some
*                        eigenvalues; these eigenvalues are flagged by a
*                        negative block number.  The effect is that the
*                        eigenvalues may not be as accurate as the
*                        absolute and relative tolerances.  This is
*                        generally caused by unexpectedly inaccurate
*                        arithmetic.
*                =2 or 3: RANGE='I' only: Not all of the eigenvalues
*                        IL:IU were found.
*                        Effect: M < IU+1-IL
*                        Cause:  non-monotonic arithmetic, causing the
*                                Sturm sequence to be non-monotonic.
*                        Cure:   recalculate, using RANGE='A', and pick
*                                out eigenvalues IL:IU.  In some cases,
*                                increasing the PARAMETER "FUDGE" may
*                                make things work.
*                = 4:    RANGE='I', and the Gershgorin interval
*                        initially used was too small.  No eigenvalues
*                        were computed.
*                        Probable cause: your machine has sloppy
*                                        floating-point arithmetic.
*                        Cure: Increase the PARAMETER "FUDGE",
*                              recompile, and try again.
*
*  Internal Parameters
*  ===================
*
*  RELFAC  DOUBLE PRECISION, default = 2.0e0
*          The relative tolerance.  An interval (a,b] lies within
*          "relative tolerance" if  b-a < RELFAC*ulp*max(|a|,|b|),
*          where "ulp" is the machine precision (distance from 1 to
*          the next larger floating point number.)
*
*  FUDGE   DOUBLE PRECISION, default = 2
*          A "fudge factor" to widen the Gershgorin intervals.  Ideally,
*          a value of 1 should work, but on machines with sloppy
*          arithmetic, this needs to be larger.  The default for
*          publicly released versions should be large enough to handle
*          the worst machine around.  Note that this has no effect
*          on accuracy of the solution.
*
*  =====================================================================
*
*     .. Parameters ..
      DOUBLE PRECISION   ZERO, ONE, TWO, HALF
      PARAMETER          ( ZERO = 0.0D0, ONE = 1.0D0, TWO = 2.0D0,
     $                   HALF = 1.0D0 / TWO )
      DOUBLE PRECISION   FUDGE, RELFAC
      PARAMETER          ( FUDGE = 2.1D0, RELFAC = 2.0D0 )
*     ..
*     .. Local Scalars ..
      LOGICAL            NCNVRG, TOOFEW
      INTEGER            IB, IBEGIN, IDISCL, IDISCU, IE, IEND, IINFO,
     $                   IM, IN, IOFF, IORDER, IOUT, IRANGE, ITMAX,
     $                   ITMP1, IW, IWOFF, J, JB, JDISC, JE, NB, NWL,
     $                   NWU
      DOUBLE PRECISION   ATOLI, BNORM, GL, GU, PIVMIN, RTOLI, SAFEMN,
     $                   TMP1, TMP2, TNORM, ULP, WKILL, WL, WLU, WU, WUL
*     ..
*     .. Local Arrays ..
      INTEGER            IDUMMA( 1 )
*     ..
*     .. External Functions ..
      LOGICAL            LSAME
      INTEGER            ILAENV
      DOUBLE PRECISION   DLAMCH
      EXTERNAL           LSAME, ILAENV, DLAMCH
*     ..
*     .. External Subroutines ..
      EXTERNAL           DLAEBZ, XERBLA
*     ..
*     .. Intrinsic Functions ..
      INTRINSIC          ABSINTLOGMAXMINSQRT
*     ..
*     .. Executable Statements ..
*
      INFO = 0
*
*     Decode RANGE
*
      IF( LSAME( RANGE'A' ) ) THEN
         IRANGE = 1
      ELSE IF( LSAME( RANGE'V' ) ) THEN
         IRANGE = 2
      ELSE IF( LSAME( RANGE'I' ) ) THEN
         IRANGE = 3
      ELSE
         IRANGE = 0
      END IF
*
*     Decode ORDER
*
      IF( LSAME( ORDER, 'B' ) ) THEN
         IORDER = 2
      ELSE IF( LSAME( ORDER, 'E' ) ) THEN
         IORDER = 1
      ELSE
         IORDER = 0
      END IF
*
*     Check for Errors
*
      IF( IRANGE.LE.0 ) THEN
         INFO = -1
      ELSE IF( IORDER.LE.0 ) THEN
         INFO = -2
      ELSE IF( N.LT.0 ) THEN
         INFO = -3
      ELSE IF( IRANGE.EQ.2 ) THEN
         IF( VL.GE.VU )
     $      INFO = -5
      ELSE IF( IRANGE.EQ.3 .AND. ( IL.LT.1 .OR. IL.GT.MAX1, N ) ) )
     $          THEN
         INFO = -6
      ELSE IF( IRANGE.EQ.3 .AND. ( IU.LT.MIN( N, IL ) .OR. IU.GT.N ) )
     $          THEN
         INFO = -7
      END IF
*
      IF( INFO.NE.0 ) THEN
         CALL XERBLA( 'DSTEBZ'-INFO )
         RETURN
      END IF
*
*     Initialize error flags
*
      INFO = 0
      NCNVRG = .FALSE.
      TOOFEW = .FALSE.
*
*     Quick return if possible
*
      M = 0
      IF( N.EQ.0 )
     $   RETURN
*
*     Simplifications:
*
      IF( IRANGE.EQ.3 .AND. IL.EQ.1 .AND. IU.EQ.N )
     $   IRANGE = 1
*
*     Get machine constants
*     NB is the minimum vector length for vector bisection, or 0
*     if only scalar is to be done.
*
      SAFEMN = DLAMCH( 'S' )
      ULP = DLAMCH( 'P' )
      RTOLI = ULP*RELFAC
      NB = ILAENV( 1'DSTEBZ'' ', N, -1-1-1 )
      IF( NB.LE.1 )
     $   NB = 0
*
*     Special Case when N=1
*
      IF( N.EQ.1 ) THEN
         NSPLIT = 1
         ISPLIT( 1 ) = 1
         IF( IRANGE.EQ.2 .AND. ( VL.GE.D( 1 ) .OR. VU.LT.D( 1 ) ) ) THEN
            M = 0
         ELSE
            W( 1 ) = D( 1 )
            IBLOCK( 1 ) = 1
            M = 1
         END IF
         RETURN
      END IF
*
*     Compute Splitting Points
*
      NSPLIT = 1
      WORK( N ) = ZERO
      PIVMIN = ONE
*
      DO 10 J = 2, N
         TMP1 = E( J-1 )**2
         IFABS( D( J )*D( J-1 ) )*ULP**2+SAFEMN.GT.TMP1 ) THEN
            ISPLIT( NSPLIT ) = J - 1
            NSPLIT = NSPLIT + 1
            WORK( J-1 ) = ZERO
         ELSE
            WORK( J-1 ) = TMP1
            PIVMIN = MAX( PIVMIN, TMP1 )
         END IF
   10 CONTINUE
      ISPLIT( NSPLIT ) = N
      PIVMIN = PIVMIN*SAFEMN
*
*     Compute Interval and ATOLI
*
      IF( IRANGE.EQ.3 ) THEN
*
*        RANGE='I': Compute the interval containing eigenvalues
*                   IL through IU.
*
*        Compute Gershgorin interval for entire (split) matrix
*        and use it as the initial interval
*
         GU = D( 1 )
         GL = D( 1 )
         TMP1 = ZERO
*
         DO 20 J = 1, N - 1
            TMP2 = SQRT( WORK( J ) )
            GU = MAX( GU, D( J )+TMP1+TMP2 )
            GL = MIN( GL, D( J )-TMP1-TMP2 )
            TMP1 = TMP2
   20    CONTINUE
*
         GU = MAX( GU, D( N )+TMP1 )
         GL = MIN( GL, D( N )-TMP1 )
         TNORM = MAXABS( GL ), ABS( GU ) )
         GL = GL - FUDGE*TNORM*ULP*- FUDGE*TWO*PIVMIN
         GU = GU + FUDGE*TNORM*ULP*+ FUDGE*PIVMIN
*
*        Compute Iteration parameters
*
         ITMAX = INT( ( LOG( TNORM+PIVMIN )-LOG( PIVMIN ) ) /
     $           LOG( TWO ) ) + 2
         IF( ABSTOL.LE.ZERO ) THEN
            ATOLI = ULP*TNORM
         ELSE
            ATOLI = ABSTOL
         END IF
*
         WORK( N+1 ) = GL
         WORK( N+2 ) = GL
         WORK( N+3 ) = GU
         WORK( N+4 ) = GU
         WORK( N+5 ) = GL
         WORK( N+6 ) = GU
         IWORK( 1 ) = -1
         IWORK( 2 ) = -1
         IWORK( 3 ) = N + 1
         IWORK( 4 ) = N + 1
         IWORK( 5 ) = IL - 1
         IWORK( 6 ) = IU
*
         CALL DLAEBZ( 3, ITMAX, N, 22, NB, ATOLI, RTOLI, PIVMIN, D, E,
     $                WORK, IWORK( 5 ), WORK( N+1 ), WORK( N+5 ), IOUT,
     $                IWORK, W, IBLOCK, IINFO )
*
         IF( IWORK( 6 ).EQ.IU ) THEN
            WL = WORK( N+1 )
            WLU = WORK( N+3 )
            NWL = IWORK( 1 )
            WU = WORK( N+4 )
            WUL = WORK( N+2 )
            NWU = IWORK( 4 )
         ELSE
            WL = WORK( N+2 )
            WLU = WORK( N+4 )
            NWL = IWORK( 2 )
            WU = WORK( N+3 )
            WUL = WORK( N+1 )
            NWU = IWORK( 3 )
         END IF
*
         IF( NWL.LT.0 .OR. NWL.GE..OR. NWU.LT.1 .OR. NWU.GT.N ) THEN
            INFO = 4
            RETURN
         END IF
      ELSE
*
*        RANGE='A' or 'V' -- Set ATOLI
*
         TNORM = MAXABS( D( 1 ) )+ABS( E( 1 ) ),
     $           ABS( D( N ) )+ABS( E( N-1 ) ) )
*
         DO 30 J = 2, N - 1
            TNORM = MAX( TNORM, ABS( D( J ) )+ABS( E( J-1 ) )+
     $              ABS( E( J ) ) )
   30    CONTINUE
*
         IF( ABSTOL.LE.ZERO ) THEN
            ATOLI = ULP*TNORM
         ELSE
            ATOLI = ABSTOL
         END IF
*
         IF( IRANGE.EQ.2 ) THEN
            WL = VL
            WU = VU
         ELSE
            WL = ZERO
            WU = ZERO
         END IF
      END IF
*
*     Find Eigenvalues -- Loop Over Blocks and recompute NWL and NWU.
*     NWL accumulates the number of eigenvalues .le. WL,
*     NWU accumulates the number of eigenvalues .le. WU
*
      M = 0
      IEND = 0
      INFO = 0
      NWL = 0
      NWU = 0
*
      DO 70 JB = 1, NSPLIT
         IOFF = IEND
         IBEGIN = IOFF + 1
         IEND = ISPLIT( JB )
         IN = IEND - IOFF
*
         IFIN.EQ.1 ) THEN
*
*           Special Case -- IN=1
*
            IF( IRANGE.EQ.1 .OR. WL.GE.D( IBEGIN )-PIVMIN )
     $         NWL = NWL + 1
            IF( IRANGE.EQ.1 .OR. WU.GE.D( IBEGIN )-PIVMIN )
     $         NWU = NWU + 1
            IF( IRANGE.EQ.1 .OR. ( WL.LT.D( IBEGIN )-PIVMIN .AND. WU.GE.
     $          D( IBEGIN )-PIVMIN ) ) THEN
               M = M + 1
               W( M ) = D( IBEGIN )
               IBLOCK( M ) = JB
            END IF
         ELSE
*
*           General Case -- IN > 1
*
*           Compute Gershgorin Interval
*           and use it as the initial interval
*
            GU = D( IBEGIN )
            GL = D( IBEGIN )
            TMP1 = ZERO
*
            DO 40 J = IBEGIN, IEND - 1
               TMP2 = ABS( E( J ) )
               GU = MAX( GU, D( J )+TMP1+TMP2 )
               GL = MIN( GL, D( J )-TMP1-TMP2 )
               TMP1 = TMP2
   40       CONTINUE
*
            GU = MAX( GU, D( IEND )+TMP1 )
            GL = MIN( GL, D( IEND )-TMP1 )
            BNORM = MAXABS( GL ), ABS( GU ) )
            GL = GL - FUDGE*BNORM*ULP*IN - FUDGE*PIVMIN
            GU = GU + FUDGE*BNORM*ULP*IN + FUDGE*PIVMIN
*
*           Compute ATOLI for the current submatrix
*
            IF( ABSTOL.LE.ZERO ) THEN
               ATOLI = ULP*MAXABS( GL ), ABS( GU ) )
            ELSE
               ATOLI = ABSTOL
            END IF
*
            IF( IRANGE.GT.1 ) THEN
               IF( GU.LT.WL ) THEN
                  NWL = NWL + IN
                  NWU = NWU + IN
                  GO TO 70
               END IF
               GL = MAX( GL, WL )
               GU = MIN( GU, WU )
               IF( GL.GE.GU )
     $            GO TO 70
            END IF
*
*           Set Up Initial Interval
*
            WORK( N+1 ) = GL
            WORK( N+IN+1 ) = GU
            CALL DLAEBZ( 10ININ1, NB, ATOLI, RTOLI, PIVMIN,
     $                   D( IBEGIN ), E( IBEGIN ), WORK( IBEGIN ),
     $                   IDUMMA, WORK( N+1 ), WORK( N+2*IN+1 ), IM,
     $                   IWORK, W( M+1 ), IBLOCK( M+1 ), IINFO )
*
            NWL = NWL + IWORK( 1 )
            NWU = NWU + IWORK( IN+1 )
            IWOFF = M - IWORK( 1 )
*
*           Compute Eigenvalues
*
            ITMAX = INT( ( LOG( GU-GL+PIVMIN )-LOG( PIVMIN ) ) /
     $              LOG( TWO ) ) + 2
            CALL DLAEBZ( 2, ITMAX, ININ1, NB, ATOLI, RTOLI, PIVMIN,
     $                   D( IBEGIN ), E( IBEGIN ), WORK( IBEGIN ),
     $                   IDUMMA, WORK( N+1 ), WORK( N+2*IN+1 ), IOUT,
     $                   IWORK, W( M+1 ), IBLOCK( M+1 ), IINFO )
*
*           Copy Eigenvalues Into W and IBLOCK
*           Use -JB for block number for unconverged eigenvalues.
*
            DO 60 J = 1, IOUT
               TMP1 = HALF*( WORK( J+N )+WORK( J+IN+N ) )
*
*              Flag non-convergence.
*
               IF( J.GT.IOUT-IINFO ) THEN
                  NCNVRG = .TRUE.
                  IB = -JB
               ELSE
                  IB = JB
               END IF
               DO 50 JE = IWORK( J ) + 1 + IWOFF,
     $                 IWORK( J+IN ) + IWOFF
                  W( JE ) = TMP1
                  IBLOCK( JE ) = IB
   50          CONTINUE
   60       CONTINUE
*
            M = M + IM
         END IF
   70 CONTINUE
*
*     If RANGE='I', then (WL,WU) contains eigenvalues NWL+1,...,NWU
*     If NWL+1 < IL or NWU > IU, discard extra eigenvalues.
*
      IF( IRANGE.EQ.3 ) THEN
         IM = 0
         IDISCL = IL - 1 - NWL
         IDISCU = NWU - IU
*
         IF( IDISCL.GT.0 .OR. IDISCU.GT.0 ) THEN
            DO 80 JE = 1, M
               IF( W( JE ).LE.WLU .AND. IDISCL.GT.0 ) THEN
                  IDISCL = IDISCL - 1
               ELSE IF( W( JE ).GE.WUL .AND. IDISCU.GT.0 ) THEN
                  IDISCU = IDISCU - 1
               ELSE
                  IM = IM + 1
                  W( IM ) = W( JE )
                  IBLOCK( IM ) = IBLOCK( JE )
               END IF
   80       CONTINUE
            M = IM
         END IF
         IF( IDISCL.GT.0 .OR. IDISCU.GT.0 ) THEN
*
*           Code to deal with effects of bad arithmetic:
*           Some low eigenvalues to be discarded are not in (WL,WLU],
*           or high eigenvalues to be discarded are not in (WUL,WU]
*           so just kill off the smallest IDISCL/largest IDISCU
*           eigenvalues, by simply finding the smallest/largest
*           eigenvalue(s).
*
*           (If N(w) is monotone non-decreasing, this should never
*               happen.)
*
            IF( IDISCL.GT.0 ) THEN
               WKILL = WU
               DO 100 JDISC = 1, IDISCL
                  IW = 0
                  DO 90 JE = 1, M
                     IF( IBLOCK( JE ).NE.0 .AND.
     $                   ( W( JE ).LT.WKILL .OR. IW.EQ.0 ) ) THEN
                        IW = JE
                        WKILL = W( JE )
                     END IF
   90             CONTINUE
                  IBLOCK( IW ) = 0
  100          CONTINUE
            END IF
            IF( IDISCU.GT.0 ) THEN
*
               WKILL = WL
               DO 120 JDISC = 1, IDISCU
                  IW = 0
                  DO 110 JE = 1, M
                     IF( IBLOCK( JE ).NE.0 .AND.
     $                   ( W( JE ).GT.WKILL .OR. IW.EQ.0 ) ) THEN
                        IW = JE
                        WKILL = W( JE )
                     END IF
  110             CONTINUE
                  IBLOCK( IW ) = 0
  120          CONTINUE
            END IF
            IM = 0
            DO 130 JE = 1, M
               IF( IBLOCK( JE ).NE.0 ) THEN
                  IM = IM + 1
                  W( IM ) = W( JE )
                  IBLOCK( IM ) = IBLOCK( JE )
               END IF
  130       CONTINUE
            M = IM
         END IF
         IF( IDISCL.LT.0 .OR. IDISCU.LT.0 ) THEN
            TOOFEW = .TRUE.
         END IF
      END IF
*
*     If ORDER='B', do nothing -- the eigenvalues are already sorted
*        by block.
*     If ORDER='E', sort the eigenvalues from smallest to largest
*
      IF( IORDER.EQ.1 .AND. NSPLIT.GT.1 ) THEN
         DO 150 JE = 1, M - 1
            IE = 0
            TMP1 = W( JE )
            DO 140 J = JE + 1, M
               IF( W( J ).LT.TMP1 ) THEN
                  IE = J
                  TMP1 = W( J )
               END IF
  140       CONTINUE
*
            IF( IE.NE.0 ) THEN
               ITMP1 = IBLOCK( IE )
               W( IE ) = W( JE )
               IBLOCK( IE ) = IBLOCK( JE )
               W( JE ) = TMP1
               IBLOCK( JE ) = ITMP1
            END IF
  150    CONTINUE
      END IF
*
      INFO = 0
      IF( NCNVRG )
     $   INFO = INFO + 1
      IF( TOOFEW )
     $   INFO = INFO + 2
      RETURN
*
*     End of DSTEBZ
*
      END