1
       2
       3
       4
       5
       6
       7
       8
       9
      10
      11
      12
      13
      14
      15
      16
      17
      18
      19
      20
      21
      22
      23
      24
      25
      26
      27
      28
      29
      30
      31
      32
      33
      34
      35
      36
      37
      38
      39
      40
      41
      42
      43
      44
      45
      46
      47
      48
      49
      50
      51
      52
      53
      54
      55
      56
      57
      58
      59
      60
      61
      62
      63
      64
      65
      66
      67
      68
      69
      70
      71
      72
      73
      74
      75
      76
      77
      78
      79
      80
      81
      82
      83
      84
      85
      86
      87
      88
      89
      90
      91
      92
      93
      94
      95
      96
      97
      98
      99
     100
     101
     102
     103
     104
     105
     106
     107
     108
     109
     110
     111
     112
     113
     114
     115
     116
     117
     118
     119
     120
     121
     122
     123
     124
     125
     126
     127
     128
     129
     130
     131
     132
     133
     134
     135
     136
     137
     138
     139
     140
     141
     142
     143
     144
     145
     146
     147
     148
     149
     150
     151
     152
     153
     154
     155
     156
     157
     158
     159
     160
     161
     162
     163
     164
     165
     166
     167
     168
     169
     170
     171
     172
     173
     174
     175
     176
     177
     178
     179
     180
     181
     182
     183
     184
     185
     186
     187
     188
     189
     190
     191
     192
     193
     194
     195
     196
     197
     198
     199
     200
     201
     202
     203
     204
     205
     206
     207
     208
     209
     210
     211
     212
     213
     214
     215
     216
     217
     218
     219
     220
     221
     222
     223
     224
     225
     226
     227
     228
     229
     230
     231
     232
     233
     234
     235
     236
     237
     238
     239
     240
     241
     242
     243
     244
     245
     246
     247
     248
     249
     250
     251
     252
     253
     254
     255
     256
     257
     258
     259
     260
     261
     262
     263
     264
     265
     266
     267
     268
     269
     270
     271
     272
     273
     274
     275
     276
     277
     278
     279
     280
     281
     282
     283
     284
     285
     286
     287
     288
     289
     290
     291
     292
     293
     294
     295
     296
     297
     298
     299
     300
     301
     302
     303
     304
     305
     306
     307
     308
     309
     310
     311
     312
     313
     314
     315
     316
     317
     318
     319
     320
     321
     322
     323
     324
     325
     326
     327
     328
     329
     330
     331
     332
     333
     334
     335
     336
     337
     338
     339
     340
     341
     342
     343
     344
     345
     346
     347
     348
     349
     350
     351
     352
     353
     354
     355
     356
     357
     358
     359
     360
     361
     362
     363
     364
     365
     366
     367
     368
     369
     370
     371
     372
     373
     374
     375
     376
     377
     378
     379
     380
     381
     382
     383
     384
     385
     386
     387
     388
     389
     390
     391
     392
     393
     394
     395
     396
     397
     398
     399
     400
     401
     402
     403
     404
     405
     406
     407
     408
      SUBROUTINE DSTEDC( COMPZ, N, D, E, Z, LDZ, WORK, LWORK, IWORK,
     $                   LIWORK, INFO )
*
*  -- LAPACK driver routine (version 3.2) --
*  -- LAPACK is a software package provided by Univ. of Tennessee,    --
*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
*     November 2006
*
*     .. Scalar Arguments ..
      CHARACTER          COMPZ
      INTEGER            INFO, LDZ, LIWORK, LWORK, N
*     ..
*     .. Array Arguments ..
      INTEGER            IWORK( * )
      DOUBLE PRECISION   D( * ), E( * ), WORK( * ), Z( LDZ, * )
*     ..
*
*  Purpose
*  =======
*
*  DSTEDC computes all eigenvalues and, optionally, eigenvectors of a
*  symmetric tridiagonal matrix using the divide and conquer method.
*  The eigenvectors of a full or band real symmetric matrix can also be
*  found if DSYTRD or DSPTRD or DSBTRD has been used to reduce this
*  matrix to tridiagonal form.
*
*  This code makes very mild assumptions about floating point
*  arithmetic. It will work on machines with a guard digit in
*  add/subtract, or on those binary machines without guard digits
*  which subtract like the Cray X-MP, Cray Y-MP, Cray C-90, or Cray-2.
*  It could conceivably fail on hexadecimal or decimal machines
*  without guard digits, but we know of none.  See DLAED3 for details.
*
*  Arguments
*  =========
*
*  COMPZ   (input) CHARACTER*1
*          = 'N':  Compute eigenvalues only.
*          = 'I':  Compute eigenvectors of tridiagonal matrix also.
*          = 'V':  Compute eigenvectors of original dense symmetric
*                  matrix also.  On entry, Z contains the orthogonal
*                  matrix used to reduce the original matrix to
*                  tridiagonal form.
*
*  N       (input) INTEGER
*          The dimension of the symmetric tridiagonal matrix.  N >= 0.
*
*  D       (input/output) DOUBLE PRECISION array, dimension (N)
*          On entry, the diagonal elements of the tridiagonal matrix.
*          On exit, if INFO = 0, the eigenvalues in ascending order.
*
*  E       (input/output) DOUBLE PRECISION array, dimension (N-1)
*          On entry, the subdiagonal elements of the tridiagonal matrix.
*          On exit, E has been destroyed.
*
*  Z       (input/output) DOUBLE PRECISION array, dimension (LDZ,N)
*          On entry, if COMPZ = 'V', then Z contains the orthogonal
*          matrix used in the reduction to tridiagonal form.
*          On exit, if INFO = 0, then if COMPZ = 'V', Z contains the
*          orthonormal eigenvectors of the original symmetric matrix,
*          and if COMPZ = 'I', Z contains the orthonormal eigenvectors
*          of the symmetric tridiagonal matrix.
*          If  COMPZ = 'N', then Z is not referenced.
*
*  LDZ     (input) INTEGER
*          The leading dimension of the array Z.  LDZ >= 1.
*          If eigenvectors are desired, then LDZ >= max(1,N).
*
*  WORK    (workspace/output) DOUBLE PRECISION array,
*                                         dimension (LWORK)
*          On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
*
*  LWORK   (input) INTEGER
*          The dimension of the array WORK.
*          If COMPZ = 'N' or N <= 1 then LWORK must be at least 1.
*          If COMPZ = 'V' and N > 1 then LWORK must be at least
*                         ( 1 + 3*N + 2*N*lg N + 3*N**2 ),
*                         where lg( N ) = smallest integer k such
*                         that 2**k >= N.
*          If COMPZ = 'I' and N > 1 then LWORK must be at least
*                         ( 1 + 4*N + N**2 ).
*          Note that for COMPZ = 'I' or 'V', then if N is less than or
*          equal to the minimum divide size, usually 25, then LWORK need
*          only be max(1,2*(N-1)).
*
*          If LWORK = -1, then a workspace query is assumed; the routine
*          only calculates the optimal size of the WORK array, returns
*          this value as the first entry of the WORK array, and no error
*          message related to LWORK is issued by XERBLA.
*
*  IWORK   (workspace/output) INTEGER array, dimension (MAX(1,LIWORK))
*          On exit, if INFO = 0, IWORK(1) returns the optimal LIWORK.
*
*  LIWORK  (input) INTEGER
*          The dimension of the array IWORK.
*          If COMPZ = 'N' or N <= 1 then LIWORK must be at least 1.
*          If COMPZ = 'V' and N > 1 then LIWORK must be at least
*                         ( 6 + 6*N + 5*N*lg N ).
*          If COMPZ = 'I' and N > 1 then LIWORK must be at least
*                         ( 3 + 5*N ).
*          Note that for COMPZ = 'I' or 'V', then if N is less than or
*          equal to the minimum divide size, usually 25, then LIWORK
*          need only be 1.
*
*          If LIWORK = -1, then a workspace query is assumed; the
*          routine only calculates the optimal size of the IWORK array,
*          returns this value as the first entry of the IWORK array, and
*          no error message related to LIWORK is issued by XERBLA.
*
*  INFO    (output) INTEGER
*          = 0:  successful exit.
*          < 0:  if INFO = -i, the i-th argument had an illegal value.
*          > 0:  The algorithm failed to compute an eigenvalue while
*                working on the submatrix lying in rows and columns
*                INFO/(N+1) through mod(INFO,N+1).
*
*  Further Details
*  ===============
*
*  Based on contributions by
*     Jeff Rutter, Computer Science Division, University of California
*     at Berkeley, USA
*  Modified by Francoise Tisseur, University of Tennessee.
*
*  =====================================================================
*
*     .. Parameters ..
      DOUBLE PRECISION   ZERO, ONE, TWO
      PARAMETER          ( ZERO = 0.0D0, ONE = 1.0D0, TWO = 2.0D0 )
*     ..
*     .. Local Scalars ..
      LOGICAL            LQUERY
      INTEGER            FINISH, I, ICOMPZ, II, J, K, LGN, LIWMIN,
     $                   LWMIN, M, SMLSIZ, START, STOREZ, STRTRW
      DOUBLE PRECISION   EPS, ORGNRM, P, TINY
*     ..
*     .. External Functions ..
      LOGICAL            LSAME
      INTEGER            ILAENV
      DOUBLE PRECISION   DLAMCH, DLANST
      EXTERNAL           LSAME, ILAENV, DLAMCH, DLANST
*     ..
*     .. External Subroutines ..
      EXTERNAL           DGEMM, DLACPY, DLAED0, DLASCL, DLASET, DLASRT,
     $                   DSTEQR, DSTERF, DSWAP, XERBLA
*     ..
*     .. Intrinsic Functions ..
      INTRINSIC          ABSDBLEINTLOGMAXMODSQRT
*     ..
*     .. Executable Statements ..
*
*     Test the input parameters.
*
      INFO = 0
      LQUERY = ( LWORK.EQ.-1 .OR. LIWORK.EQ.-1 )
*
      IF( LSAME( COMPZ, 'N' ) ) THEN
         ICOMPZ = 0
      ELSE IF( LSAME( COMPZ, 'V' ) ) THEN
         ICOMPZ = 1
      ELSE IF( LSAME( COMPZ, 'I' ) ) THEN
         ICOMPZ = 2
      ELSE
         ICOMPZ = -1
      END IF
      IF( ICOMPZ.LT.0 ) THEN
         INFO = -1
      ELSE IF( N.LT.0 ) THEN
         INFO = -2
      ELSE IF( ( LDZ.LT.1 ) .OR.
     $         ( ICOMPZ.GT.0 .AND. LDZ.LT.MAX1, N ) ) ) THEN
         INFO = -6
      END IF
*
      IF( INFO.EQ.0 ) THEN
*
*        Compute the workspace requirements
*
         SMLSIZ = ILAENV( 9'DSTEDC'' '0000 )
         IF( N.LE.1 .OR. ICOMPZ.EQ.0 ) THEN
            LIWMIN = 1
            LWMIN = 1
         ELSE IF( N.LE.SMLSIZ ) THEN
            LIWMIN = 1
            LWMIN = 2*( N - 1 )
         ELSE
            LGN = INTLOGDBLE( N ) )/LOG( TWO ) )
            IF2**LGN.LT.N )
     $         LGN = LGN + 1
            IF2**LGN.LT.N )
     $         LGN = LGN + 1
            IF( ICOMPZ.EQ.1 ) THEN
               LWMIN = 1 + 3*+ 2*N*LGN + 3*N**2
               LIWMIN = 6 + 6*+ 5*N*LGN
            ELSE IF( ICOMPZ.EQ.2 ) THEN
               LWMIN = 1 + 4*+ N**2
               LIWMIN = 3 + 5*N
            END IF
         END IF
         WORK( 1 ) = LWMIN
         IWORK( 1 ) = LIWMIN
*
         IF( LWORK.LT.LWMIN .AND. .NOT. LQUERY ) THEN
            INFO = -8
         ELSE IF( LIWORK.LT.LIWMIN .AND. .NOT. LQUERY ) THEN
            INFO = -10
         END IF
      END IF
*
      IF( INFO.NE.0 ) THEN
         CALL XERBLA( 'DSTEDC'-INFO )
         RETURN
      ELSE IF (LQUERY) THEN
         RETURN
      END IF
*
*     Quick return if possible
*
      IF( N.EQ.0 )
     $   RETURN
      IF( N.EQ.1 ) THEN
         IF( ICOMPZ.NE.0 )
     $      Z( 11 ) = ONE
         RETURN
      END IF
*
*     If the following conditional clause is removed, then the routine
*     will use the Divide and Conquer routine to compute only the
*     eigenvalues, which requires (3N + 3N**2) real workspace and
*     (2 + 5N + 2N lg(N)) integer workspace.
*     Since on many architectures DSTERF is much faster than any other
*     algorithm for finding eigenvalues only, it is used here
*     as the default. If the conditional clause is removed, then
*     information on the size of workspace needs to be changed.
*
*     If COMPZ = 'N', use DSTERF to compute the eigenvalues.
*
      IF( ICOMPZ.EQ.0 ) THEN
         CALL DSTERF( N, D, E, INFO )
         GO TO 50
      END IF
*
*     If N is smaller than the minimum divide size (SMLSIZ+1), then
*     solve the problem with another solver.
*
      IF( N.LE.SMLSIZ ) THEN
*
         CALL DSTEQR( COMPZ, N, D, E, Z, LDZ, WORK, INFO )
*
      ELSE
*
*        If COMPZ = 'V', the Z matrix must be stored elsewhere for later
*        use.
*
         IF( ICOMPZ.EQ.1 ) THEN
            STOREZ = 1 + N*N
         ELSE
            STOREZ = 1
         END IF
*
         IF( ICOMPZ.EQ.2 ) THEN
            CALL DLASET( 'Full', N, N, ZERO, ONE, Z, LDZ )
         END IF
*
*        Scale.
*
         ORGNRM = DLANST( 'M', N, D, E )
         IF( ORGNRM.EQ.ZERO )
     $      GO TO 50
*
         EPS = DLAMCH( 'Epsilon' )
*
         START = 1
*
*        while ( START <= N )
*
   10    CONTINUE
         IF( START.LE.N ) THEN
*
*           Let FINISH be the position of the next subdiagonal entry
*           such that E( FINISH ) <= TINY or FINISH = N if no such
*           subdiagonal exists.  The matrix identified by the elements
*           between START and FINISH constitutes an independent
*           sub-problem.
*
            FINISH = START
   20       CONTINUE
            IF( FINISH.LT.N ) THEN
               TINY = EPS*SQRTABS( D( FINISH ) ) )*
     $                    SQRTABS( D( FINISH+1 ) ) )
               IFABS( E( FINISH ) ).GT.TINY ) THEN
                  FINISH = FINISH + 1
                  GO TO 20
               END IF
            END IF
*
*           (Sub) Problem determined.  Compute its size and solve it.
*
            M = FINISH - START + 1
            IF( M.EQ.1 ) THEN
               START = FINISH + 1
               GO TO 10
            END IF
            IF( M.GT.SMLSIZ ) THEN
*
*              Scale.
*
               ORGNRM = DLANST( 'M', M, D( START ), E( START ) )
               CALL DLASCL( 'G'00, ORGNRM, ONE, M, 1, D( START ), M,
     $                      INFO )
               CALL DLASCL( 'G'00, ORGNRM, ONE, M-11, E( START ),
     $                      M-1, INFO )
*
               IF( ICOMPZ.EQ.1 ) THEN
                  STRTRW = 1
               ELSE
                  STRTRW = START
               END IF
               CALL DLAED0( ICOMPZ, N, M, D( START ), E( START ),
     $                      Z( STRTRW, START ), LDZ, WORK( 1 ), N,
     $                      WORK( STOREZ ), IWORK, INFO )
               IF( INFO.NE.0 ) THEN
                  INFO = ( INFO / ( M+1 )+START-1 )*( N+1 ) +
     $                   MOD( INFO, ( M+1 ) ) + START - 1
                  GO TO 50
               END IF
*
*              Scale back.
*
               CALL DLASCL( 'G'00, ONE, ORGNRM, M, 1, D( START ), M,
     $                      INFO )
*
            ELSE
               IF( ICOMPZ.EQ.1 ) THEN
*
*                 Since QR won't update a Z matrix which is larger than
*                 the length of D, we must solve the sub-problem in a
*                 workspace and then multiply back into Z.
*
                  CALL DSTEQR( 'I', M, D( START ), E( START ), WORK, M,
     $                         WORK( M*M+1 ), INFO )
                  CALL DLACPY( 'A', N, M, Z( 1, START ), LDZ,
     $                         WORK( STOREZ ), N )
                  CALL DGEMM( 'N''N', N, M, M, ONE,
     $                        WORK( STOREZ ), N, WORK, M, ZERO,
     $                        Z( 1, START ), LDZ )
               ELSE IF( ICOMPZ.EQ.2 ) THEN
                  CALL DSTEQR( 'I', M, D( START ), E( START ),
     $                         Z( START, START ), LDZ, WORK, INFO )
               ELSE
                  CALL DSTERF( M, D( START ), E( START ), INFO )
               END IF
               IF( INFO.NE.0 ) THEN
                  INFO = START*( N+1 ) + FINISH
                  GO TO 50
               END IF
            END IF
*
            START = FINISH + 1
            GO TO 10
         END IF
*
*        endwhile
*
*        If the problem split any number of times, then the eigenvalues
*        will not be properly ordered.  Here we permute the eigenvalues
*        (and the associated eigenvectors) into ascending order.
*
         IF( M.NE.N ) THEN
            IF( ICOMPZ.EQ.0 ) THEN
*
*              Use Quick Sort
*
               CALL DLASRT( 'I', N, D, INFO )
*
            ELSE
*
*              Use Selection Sort to minimize swaps of eigenvectors
*
               DO 40 II = 2, N
                  I = II - 1
                  K = I
                  P = D( I )
                  DO 30 J = II, N
                     IF( D( J ).LT.P ) THEN
                        K = J
                        P = D( J )
                     END IF
   30             CONTINUE
                  IF( K.NE.I ) THEN
                     D( K ) = D( I )
                     D( I ) = P
                     CALL DSWAP( N, Z( 1, I ), 1, Z( 1, K ), 1 )
                  END IF
   40          CONTINUE
            END IF
         END IF
      END IF
*
   50 CONTINUE
      WORK( 1 ) = LWMIN
      IWORK( 1 ) = LIWMIN
*
      RETURN
*
*     End of DSTEDC
*
      END